ﻻ يوجد ملخص باللغة العربية
We present observations of the optical afterglow of GRB,170817A, made by the {it Hubble Space Telescope}, between February and August 2018, up to one year after the neutron star merger, GW170817. The afterglow shows a rapid decline beyond $170$~days, and confirms the jet origin for the observed outflow, in contrast to more slowly declining expectations for `failed-jet scenarios. We show here that the broadband (radio, optical, X-ray) afterglow is consistent with a structured outflow where an ultra-relativistic jet, with Lorentz factor $Gammagtrsim100$, forms a narrow core ($sim5^circ$) and is surrounded by a wider angular component that extends to $sim15^circ$, which is itself relativistic ($Gammagtrsim5$). For a two-component model of this structure, the late-time optical decline, where $F propto t^{-alpha}$, is $alpha=2.20pm0.18$, and for a Gaussian structure the decline is $alpha=2.45pm0.23$. We find the Gaussian model to be consistent with both the early $sim10$ days and late $gtrsim290$ days data. The agreement of the optical light curve with the evolution of the broadband spectral energy distribution and its continued decline indicates that the optical flux is arising primarily from the afterglow and not any underlying host system. This provides the deepest limits on any host stellar cluster, with a luminosity $lesssim 4000 L_odot~(M_{rm F606W}gtrsim-4.3)$.
The first observation of a binary neutron star coalescence by the Advanced LIGO and Advanced Virgo gravitational-wave detectors offers an unprecedented opportunity to study matter under the most extreme conditions. After such a merger, a compact remn
Measuring the collapse time of a binary neutron star merger remnant can inform the physics of extreme matter and improve modelling of short gamma-ray bursts and associated kilonova. The lifetime of the post-merger remnant directly impacts the mechani
The post-merger gravitational wave (GW) radiation of the remnant formed in the binary neutron star (BNS) coalescence has not been directly measured, yet. We show in this work that the properties of the BNS involved in GW170817, additionally constrain
We present new radio observations of the binary neutron star merger GW170817 carried out with the Karl G. Jansky Very large Array (VLA) more than 3,yrs after the merger. Our combined dataset is derived by co-adding more than $approx32$,hours of VLA t
Recent detection of gravitational waves from a neutron star (NS) merger event GW170817 and identification of an electromagnetic counterpart provide a unique opportunity to study the physical processes in NS mergers. To derive properties of ejected ma