ﻻ يوجد ملخص باللغة العربية
In this paper, we study fast training of adversarially robust models. From the analyses of the state-of-the-art defense method, i.e., the multi-step adversarial training, we hypothesize that the gradient magnitude links to the model robustness. Motivated by this, we propose to perturb both the image and the label during training, which we call Bilateral Adversarial Training (BAT). To generate the adversarial label, we derive an closed-form heuristic solution. To generate the adversarial image, we use one-step targeted attack with the target label being the most confusing class. In the experiment, we first show that random start and the most confusing target attack effectively prevent the label leaking and gradient masking problem. Then coupled with the adversarial label part, our model significantly improves the state-of-the-art results. For example, against PGD100 white-box attack with cross-entropy loss, on CIFAR10, we achieve 63.7% versus 47.2%; on SVHN, we achieve 59.1% versus 42.1%. At last, the experiment on the very (computationally) challenging ImageNet dataset further demonstrates the effectiveness of our fast method.
Adversarial training was introduced as a way to improve the robustness of deep learning models to adversarial attacks. This training method improves robustness against adversarial attacks, but increases the models vulnerability to privacy attacks. In
Deep neural networks have been shown to be susceptible to adversarial examples -- small, imperceptible changes constructed to cause mis-classification in otherwise highly accurate image classifiers. As a practical alternative, recent work proposed so
Adversarial training, a method for learning robust deep neural networks, constructs adversarial examples during training. However, recent methods for generating NLP adversarial examples involve combinatorial search and expensive sentence encoders for
Deep neural networks (DNNs) have been used in digital forensics to identify fake facial images. We investigated several DNN-based forgery forensics models (FFMs) to examine whether they are secure against adversarial attacks. We experimentally demons
Deep learning, as widely known, is vulnerable to adversarial samples. This paper focuses on the adversarial attack on autoencoders. Safety of the autoencoders (AEs) is important because they are widely used as a compression scheme for data storage an