ترغب بنشر مسار تعليمي؟ اضغط هنا

Bilateral Adversarial Training: Towards Fast Training of More Robust Models Against Adversarial Attacks

78   0   0.0 ( 0 )
 نشر من قبل Jianyu Wang
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we study fast training of adversarially robust models. From the analyses of the state-of-the-art defense method, i.e., the multi-step adversarial training, we hypothesize that the gradient magnitude links to the model robustness. Motivated by this, we propose to perturb both the image and the label during training, which we call Bilateral Adversarial Training (BAT). To generate the adversarial label, we derive an closed-form heuristic solution. To generate the adversarial image, we use one-step targeted attack with the target label being the most confusing class. In the experiment, we first show that random start and the most confusing target attack effectively prevent the label leaking and gradient masking problem. Then coupled with the adversarial label part, our model significantly improves the state-of-the-art results. For example, against PGD100 white-box attack with cross-entropy loss, on CIFAR10, we achieve 63.7% versus 47.2%; on SVHN, we achieve 59.1% versus 42.1%. At last, the experiment on the very (computationally) challenging ImageNet dataset further demonstrates the effectiveness of our fast method.



قيم البحث

اقرأ أيضاً

Adversarial training was introduced as a way to improve the robustness of deep learning models to adversarial attacks. This training method improves robustness against adversarial attacks, but increases the models vulnerability to privacy attacks. In this work we demonstrate how model inversion attacks, extracting training data directly from the model, previously thought to be intractable become feasible when attacking a robustly trained model. The input space for a traditionally trained model is dominated by adversarial examples - data points that strongly activate a certain class but lack semantic meaning - this makes it difficult to successfully conduct model inversion attacks. We demonstrate this effect using the CIFAR-10 dataset under three different model inversion attacks, a vanilla gradient descent method, gradient based method at different scales, and a generative adversarial network base attacks.
Deep neural networks have been shown to be susceptible to adversarial examples -- small, imperceptible changes constructed to cause mis-classification in otherwise highly accurate image classifiers. As a practical alternative, recent work proposed so -called adversarial patches: clearly visible, but adversarially crafted rectangular patches in images. These patches can easily be printed and applied in the physical world. While defenses against imperceptible adversarial examples have been studied extensively, robustness against adversarial patches is poorly understood. In this work, we first devise a practical approach to obtain adversarial patches while actively optimizing their location within the image. Then, we apply adversarial training on these location-optimized adversarial patches and demonstrate significantly improved robustness on CIFAR10 and GTSRB. Additionally, in contrast to adversarial training on imperceptible adversarial examples, our adversarial patch training does not reduce accuracy.
398 - Jin Yong Yoo , Yanjun Qi 2021
Adversarial training, a method for learning robust deep neural networks, constructs adversarial examples during training. However, recent methods for generating NLP adversarial examples involve combinatorial search and expensive sentence encoders for constraining the generated instances. As a result, it remains challenging to use vanilla adversarial training to improve NLP models performance, and the benefits are mainly uninvestigated. This paper proposes a simple and improved vanilla adversarial training process for NLP models, which we name Attacking to Training (A2T). The core part of A2T is a new and cheaper word substitution attack optimized for vanilla adversarial training. We use A2T to train BERT and RoBERTa models on IMDB, Rotten Tomatoes, Yelp, and SNLI datasets. Our results empirically show that it is possible to train robust NLP models using a much cheaper adversary. We demonstrate that vanilla adversarial training with A2T can improve an NLP models robustness to the attack it was originally trained with and also defend the model against other types of word substitution attacks. Furthermore, we show that A2T can improve NLP models standard accuracy, cross-domain generalization, and interpretability. Code is available at https://github.com/QData/Textattack-A2T .
Deep neural networks (DNNs) have been used in digital forensics to identify fake facial images. We investigated several DNN-based forgery forensics models (FFMs) to examine whether they are secure against adversarial attacks. We experimentally demons trated the existence of individual adversarial perturbations (IAPs) and universal adversarial perturbations (UAPs) that can lead a well-performed FFM to misbehave. Based on iterative procedure, gradient information is used to generate two kinds of IAPs that can be used to fabricate classification and segmentation outputs. In contrast, UAPs are generated on the basis of over-firing. We designed a new objective function that encourages neurons to over-fire, which makes UAP generation feasible even without using training data. Experiments demonstrated the transferability of UAPs across unseen datasets and unseen FFMs. Moreover, we conducted subjective assessment for imperceptibility of the adversarial perturbations, revealing that the crafted UAPs are visually negligible. These findings provide a baseline for evaluating the adversarial security of FFMs.
85 - Chengjin Sun , Sizhe Chen , 2020
Deep learning, as widely known, is vulnerable to adversarial samples. This paper focuses on the adversarial attack on autoencoders. Safety of the autoencoders (AEs) is important because they are widely used as a compression scheme for data storage an d transmission, however, the current autoencoders are easily attacked, i.e., one can slightly modify an input but has totally different codes. The vulnerability is rooted the sensitivity of the autoencoders and to enhance the robustness, we propose to adopt double backpropagation (DBP) to secure autoencoder such as VAE and DRAW. We restrict the gradient from the reconstruction image to the original one so that the autoencoder is not sensitive to trivial perturbation produced by the adversarial attack. After smoothing the gradient by DBP, we further smooth the label by Gaussian Mixture Model (GMM), aiming for accurate and robust classification. We demonstrate in MNIST, CelebA, SVHN that our method leads to a robust autoencoder resistant to attack and a robust classifier able for image transition and immune to adversarial attack if combined with GMM.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا