ترغب بنشر مسار تعليمي؟ اضغط هنا

Evolving Space-Time Neural Architectures for Videos

170   0   0.0 ( 0 )
 نشر من قبل Michael S. Ryoo
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a new method for finding video CNN architectures that capture rich spatio-temporal information in videos. Previous work, taking advantage of 3D convolutions, obtained promising results by manually designing video CNN architectures. We here develop a novel evolutionary search algorithm that automatically explores models with different types and combinations of layers to jointly learn interactions between spatial and temporal aspects of video representations. We demonstrate the generality of this algorithm by applying it to two meta-architectures, obtaining new architectures superior to manually designed architectures. Further, we propose a new component, the iTGM layer, which more efficiently utilizes its parameters to allow learning of space-time interactions over longer time horizons. The iTGM layer is often preferred by the evolutionary algorithm and allows building cost-efficient networks. The proposed approach discovers new and diverse video architectures that were previously unknown. More importantly they are both more accurate and faster than prior models, and outperform the state-of-the-art results on multiple datasets we test, including HMDB, Kinetics, and Moments in Time. We will open source the code and models, to encourage future model development.



قيم البحث

اقرأ أيضاً

Learning to represent videos is a very challenging task both algorithmically and computationally. Standard video CNN architectures have been designed by directly extending architectures devised for image understanding to include the time dimension, u sing modules such as 3D convolutions, or by using two-stream design to capture both appearance and motion in videos. We interpret a video CNN as a collection of multi-stream convolutional blocks connected to each other, and propose the approach of automatically finding neural architectures with better connectivity and spatio-temporal interactions for video understanding. This is done by evolving a population of overly-connected architectures guided by connection weight learning. Architectures combining representations that abstract different input types (i.e., RGB and optical flow) at multiple temporal resolutions are searched for, allowing different types or sources of information to interact with each other. Our method, referred to as AssembleNet, outperforms prior approaches on public video datasets, in some cases by a great margin. We obtain 58.6% mAP on Charades and 34.27% accuracy on Moments-in-Time.
130 - Yuanzheng Ci , Chen Lin , Ming Sun 2020
The automation of neural architecture design has been a coveted alternative to human experts. Recent works have small search space, which is easier to optimize but has a limited upper bound of the optimal solution. Extra human design is needed for th ose methods to propose a more suitable space with respect to the specific task and algorithm capacity. To further enhance the degree of automation for neural architecture search, we present a Neural Search-space Evolution (NSE) scheme that iteratively amplifies the results from the previous effort by maintaining an optimized search space subset. This design minimizes the necessity of a well-designed search space. We further extend the flexibility of obtainable architectures by introducing a learnable multi-branch setting. By employing the proposed method, a consistent performance gain is achieved during a progressive search over upcoming search spaces. We achieve 77.3% top-1 retrain accuracy on ImageNet with 333M FLOPs, which yielded a state-of-the-art performance among previous auto-generated architectures that do not involve knowledge distillation or weight pruning. When the latency constraint is adopted, our result also performs better than the previous best-performing mobile models with a 77.9% Top-1 retrain accuracy.
Convolutional neural networks for visual recognition require large amounts of training samples and usually benefit from data augmentation. This paper proposes PatchMix, a data augmentation method that creates new samples by composing patches from pai rs of images in a grid-like pattern. These new samples ground truth labels are set as proportional to the number of patches from each image. We then add a set of additional losses at the patch-level to regularize and to encourage good representations at both the patch and image levels. A ResNet-50 model trained on ImageNet using PatchMix exhibits superior transfer learning capabilities across a wide array of benchmarks. Although PatchMix can rely on random pairings and random grid-like patterns for mixing, we explore evolutionary search as a guiding strategy to discover optimal grid-like patterns and image pairing jointly. For this purpose, we conceive a fitness function that bypasses the need to re-train a model to evaluate each choice. In this way, PatchMix outperforms a base model on CIFAR-10 (+1.91), CIFAR-100 (+5.31), Tiny Imagenet (+3.52), and ImageNet (+1.16) by significant margins, also outperforming previous state-of-the-art pairwise augmentation strategies.
Neural Architecture Search (NAS) has shifted network design from using human intuition to leveraging search algorithms guided by evaluation metrics. We study channel size optimization in convolutional neural networks (CNN) and identify the role it pl ays in model accuracy and complexity. Current channel size selection methods are generally limited by discrete sample spaces while suffering from manual iteration and simple heuristics. To solve this, we introduce an efficient dynamic scaling algorithm -- CONet -- that automatically optimizes channel sizes across network layers for a given CNN. Two metrics -- ``textit{Rank} and textit{Rank Average Slope} -- are introduced to identify the information accumulated in training. The algorithm dynamically scales channel sizes up or down over a fixed searching phase. We conduct experiments on CIFAR10/100 and ImageNet datasets and show that CONet can find efficient and accurate architectures searched in ResNet, DARTS, and DARTS+ spaces that outperform their baseline models.
Neural Architecture Search (NAS) achieves significant progress in many computer vision tasks. While many methods have been proposed to improve the efficiency of NAS, the search progress is still laborious because training and evaluating plausible arc hitectures over large search space is time-consuming. Assessing network candidates under a proxy (i.e., computationally reduced setting) thus becomes inevitable. In this paper, we observe that most existing proxies exhibit different behaviors in maintaining the rank consistency among network candidates. In particular, some proxies can be more reliable -- the rank of candidates does not differ much comparing their reduced setting performance and final performance. In this paper, we systematically investigate some widely adopted reduction factors and report our observations. Inspired by these observations, we present a reliable proxy and further formulate a hierarchical proxy strategy. The strategy spends more computations on candidate networks that are potentially more accurate, while discards unpromising ones in early stage with a fast proxy. This leads to an economical evolutionary-based NAS (EcoNAS), which achieves an impressive 400x search time reduction in comparison to the evolutionary-based state of the art (8 vs. 3150 GPU days). Some new proxies led by our observations can also be applied to accelerate other NAS methods while still able to discover good candidate networks with performance matching those found by previous proxy strategies.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا