ﻻ يوجد ملخص باللغة العربية
The meaning of a sentence is a function of the relations that hold between its words. We instantiate this relational view of semantics in a series of neural models based on variants of relation networks (RNs) which represent a set of objects (for us, words forming a sentence) in terms of representations of pairs of objects. We propose two extensions to the basic RN model for natural language. First, building on the intuition that not all word pairs are equally informative about the meaning of a sentence, we use constraints based on both supervised and unsupervised dependency syntax to control which relations influence the representation. Second, since higher-order relations are poorly captured by a sum of pairwise relations, we use a recurrent extension of RNs to propagate information so as to form representations of higher order relations. Experiments on sentence classification, sentence pair classification, and machine translation reveal that, while basic RNs are only modestly effective for sentence representation, recurrent RNs with latent syntax are a reliably powerful representational device.
Tree-based Long short term memory (LSTM) network has become state-of-the-art for modeling the meaning of language texts as they can effectively exploit the grammatical syntax and thereby non-linear dependencies among words of the sentence. However, m
Modeling the structure of coherent texts is a key NLP problem. The task of coherently organizing a given set of sentences has been commonly used to build and evaluate models that understand such structure. We propose an end-to-end unsupervised deep l
Sentence-level relation extraction mainly aims to classify the relation between two entities in a sentence. The sentence-level relation extraction corpus often contains data that are difficult for the model to infer or noise data. In this paper, we p
Question Answering (QA) systems are used to provide proper responses to users questions automatically. Sentence matching is an essential task in the QA systems and is usually reformulated as a Paraphrase Identification (PI) problem. Given a question,
We propose a selective encoding model to extend the sequence-to-sequence framework for abstractive sentence summarization. It consists of a sentence encoder, a selective gate network, and an attention equipped decoder. The sentence encoder and decode