ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamical Belyi maps and arboreal Galois groups

176   0   0.0 ( 0 )
 نشر من قبل Valentijn Karemaker
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider a large class of so-called dynamical Belyi maps and study the Galois groups of iterates of such maps. From the combinatorial invariants of the maps, we construct a useful presentation of their Galois groups as subgroups of automorphism groups of regular trees, in terms of iterated wreath products. This allows us to study the behavior of the monodromy groups under specialization of the maps, and to derive applications to dynamical sequences.



قيم البحث

اقرأ أيضاً

We study the dynamical properties of a large class of rational maps with exactly three ramification points. By constructing families of such maps, we obtain infinitely many conservative maps of degree $d$; this answers a question of Silverman. Rather precise results on the reduction of these maps yield strong information on the rational dynamics.
The arboreal Galois group of a polynomial $f$ over a field $K$ encodes the action of Galois on the iterated preimages of a root point $x_0in K$, analogous to the action of Galois on the $ell$-power torsion of an abelian variety. We compute the arbore al Galois group of the postcritically finite polynomial $f(z) = z^2 - 1$ when the field $K$ and root point $x_0$ satisfy a simple condition. We call the resulting group the arithmetic basilica group because of its relation to the basilica group associated with the complex dynamics of $f$. For $K=mathbb{Q}$, our condition holds for infinitely many choices of $x_0$.
In this paper we generalize results of P. Le Duff to genus n hyperelliptic curves. More precisely, let C/Q be a hyperelliptic genus n curve and let J(C) be the associated Jacobian variety. Assume that there exists a prime p such that J(C) has semista ble reduction with toric dimension 1 at p. We provide an algorithm to compute a list of primes l (if they exist) such that the Galois representation attached to the l-torsion of J(C) is surjective onto the group GSp(2n, l). In particular we realize GSp(6, l) as a Galois group over Q for all primes l in [11, 500000].
Riemanns Existence Theorem gives the following bijections: (1) Isomorphism classes of Belyi maps of degree $d$. (2) Equivalence classes of generating systems of degree $d$. (3) Isomorphism classes of dessins denfants with $d$ edges. In previous work, the first author and collaborators exploited the correspondence between Belyi maps and their generating systems to provide explicit equations for two infinite families of dynamical Belyi maps. We complete this picture by describing the dessins denfants for these two families.
We give necessary and sufficient conditions for post-critically finite polynomials to have potential good reduction at a given prime. We also answer in the negative a question posed by Silverman about conservative polynomials. Both proofs rely on dyn amical Belyi polynomials as exemplars of PCF (resp. conservative) maps.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا