ﻻ يوجد ملخص باللغة العربية
A considerable number of systems have recently been reported in which Brownian yet non-Gaussian dynamics was observed. These are processes characterised by a linear growth in time of the mean squared displacement, yet the probability density function of the particle displacement is distinctly non-Gaussian, and often of exponential (Laplace) shape. This apparently ubiquitous behaviour observed in very different physical systems has been interpreted as resulting from diffusion in inhomogeneous environments and mathematically represented through a variable, stochastic diffusion coefficient. Indeed different models describing a fluctuating diffusivity have been studied. Here we present a new view of the stochastic basis describing time dependent random diffusivities within a broad spectrum of distributions. Concretely, our study is based on the very generic class of the generalised Gamma distribution. Two models for the particle spreading in such random diffusivity settings are studied. The first belongs to the class of generalised grey Brownian motion while the second follows from the idea of diffusing diffusivities. The two processes exhibit significant characteristics which reproduce experimental results from different biological and physical systems. We promote these two physical models for the description of stochastic particle motion in complex environments.
We discuss the situations under which Brownian yet non-Gaussian (BnG) diffusion can be observed in the model of a particles motion in a random landscape of diffusion coefficients slowly varying in space. Our conclusion is that such behavior is extrem
A theoretical framework is developed for the phenomenon of non-Gaussian normal diffusion that has experimentally been observed in several heterogeneous systems. From the Fokker-Planck equation with the dynamical structure with largely separated time
We derive diffusive macroscopic equations for the particle and energy density of a system whose time evolution is described by a kinetic equation for the one particle position and velocity function f(r,v,t) that consists of a part that conserves ener
We study the extremal properties of a stochastic process $x_t$ defined by a Langevin equation $dot{x}_t=sqrt{2 D_0 V(B_t)},xi_t$, where $xi_t$ is a Gaussian white noise with zero mean, $D_0$ is a constant scale factor, and $V(B_t)$ is a stochastic di
Recent theoretical modeling offers a unified picture for the description of stochastic processes characterized by a crossover from anomalous to normal behavior. This is particularly welcome, as a growing number of experiments suggest the crossover to