ترغب بنشر مسار تعليمي؟ اضغط هنا

Random diffusivity from stochastic equations: comparison of two models for Brownian yet non-Gaussian diffusion

79   0   0.0 ( 0 )
 نشر من قبل Ralf Metzler
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A considerable number of systems have recently been reported in which Brownian yet non-Gaussian dynamics was observed. These are processes characterised by a linear growth in time of the mean squared displacement, yet the probability density function of the particle displacement is distinctly non-Gaussian, and often of exponential (Laplace) shape. This apparently ubiquitous behaviour observed in very different physical systems has been interpreted as resulting from diffusion in inhomogeneous environments and mathematically represented through a variable, stochastic diffusion coefficient. Indeed different models describing a fluctuating diffusivity have been studied. Here we present a new view of the stochastic basis describing time dependent random diffusivities within a broad spectrum of distributions. Concretely, our study is based on the very generic class of the generalised Gamma distribution. Two models for the particle spreading in such random diffusivity settings are studied. The first belongs to the class of generalised grey Brownian motion while the second follows from the idea of diffusing diffusivities. The two processes exhibit significant characteristics which reproduce experimental results from different biological and physical systems. We promote these two physical models for the description of stochastic particle motion in complex environments.



قيم البحث

اقرأ أيضاً

We discuss the situations under which Brownian yet non-Gaussian (BnG) diffusion can be observed in the model of a particles motion in a random landscape of diffusion coefficients slowly varying in space. Our conclusion is that such behavior is extrem ely unlikely in the situations when the particles, introduced into the system at random at $t=0$, are observed from the preparation of the system on. However, it indeed may arise in the case when the diffusion (as described in Ito interpretation) is observed under equilibrated conditions. This paradigmatic situation can be translated into the model of the diffusion coefficient fluctuating in time along a trajectory, i.e. into a kind of the diffusing diffusivity model.
188 - Sumiyoshi Abe 2020
A theoretical framework is developed for the phenomenon of non-Gaussian normal diffusion that has experimentally been observed in several heterogeneous systems. From the Fokker-Planck equation with the dynamical structure with largely separated time scales, a set of three equations are derived for the fast degree of freedom, the slow degree of freedom and the coupling between these two hierarchies. It is shown that this approach consistently describes diffusing diffusivity and non-Gaussian normal diffusion.
We derive diffusive macroscopic equations for the particle and energy density of a system whose time evolution is described by a kinetic equation for the one particle position and velocity function f(r,v,t) that consists of a part that conserves ener gy and momentum such as the Boltzmann equation and an external randomization of the particle velocity directions that breaks the momentum conservation. Rescaling space and time by epsilon and epsilon square respectively and carrying out a Hilbert expansion in epsilon around a local equilibrium Maxwellian yields coupled diffusion equations with specified Onsager coefficients for the particle and energy density. Our analysis includes a system of hard disks at intermediate densities by using the Enskog equation for the collision kernel.
We study the extremal properties of a stochastic process $x_t$ defined by a Langevin equation $dot{x}_t=sqrt{2 D_0 V(B_t)},xi_t$, where $xi_t$ is a Gaussian white noise with zero mean, $D_0$ is a constant scale factor, and $V(B_t)$ is a stochastic di ffusivity (noise strength), which itself is a functional of independent Brownian motion $B_t$. We derive exact, compact expressions for the probability density functions (PDFs) of the first passage time (FPT) $t$ from a fixed location $x_0$ to the origin for three different realisations of the stochastic diffusivity: a cut-off case $V(B_t) =Theta(B_t)$ (Model I), where $Theta(x)$ is the Heaviside theta function; a Geometric Brownian Motion $V(B_t)=exp(B_t)$ (Model II); and a case with $V(B_t)=B_t^2$ (Model III). We realise that, rather surprisingly, the FPT PDF has exactly the Levy-Smirnov form (specific for standard Brownian motion) for Model II, which concurrently exhibits a strongly anomalous diffusion. For Models I and III either the left or right tails (or both) have a different functional dependence on time as compared to the Levy-Smirnov density. In all cases, the PDFs are broad such that already the first moment does not exist. Similar results are obtained in three dimensions for the FPT PDF to an absorbing spherical target.
Recent theoretical modeling offers a unified picture for the description of stochastic processes characterized by a crossover from anomalous to normal behavior. This is particularly welcome, as a growing number of experiments suggest the crossover to be a common feature shared by many systems: in some cases the anomalous part of the dynamics amounts to a Brownian yet non-Gaussian diffusion; more generally, both the diffusion exponent and the distribution may deviate from normal behavior in the initial part of the process. Since proposed theories work at a mesoscopic scale invoking the subordination of diffusivities, it is of primary importance to bridge these representations with a more fundamental, ``microscopic description. We argue that the dynamical behavior of macromolecules during simple polymerization processes provide suitable setups in which analytic, numerical, and particle-tracking experiments can be contrasted at such a scope. Specifically, we demonstrate that Brownian yet non-Gaussian diffusion of the center of mass of a polymer is a direct consequence of the polymerization process. Through the kurtosis, we characterize the early-stage non-Gaussian behavior within a phase diagram, and we also put forward an estimation for the crossover time to ordinary Brownian motion.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا