ﻻ يوجد ملخص باللغة العربية
The compactification from the 11-dimensional Horava-Witten orbifold to 5-dimensional heterotic M-theory on a Schoen Calabi-Yau threefold is reviewed, as is the specific $SU(4)$ vector bundle leading to the heterotic standard model in the observable sector. A generic formalism for a consistent hidden sector gauge bundle, within the context of strongly coupled heterotic M-theory, is presented. Anomaly cancellation and the associated bulk space 5-branes are discussed in this context. The further compactification to a 4-dimensional effective field theory on a linearized BPS double domain wall is then presented to order $kappa_{11}^{4/3}$. Specifically, the generic constraints required for anomaly cancellation and by the linearized domain wall solution, the constraints imposed by the necessity for positive, perturbative squared gauge couplings to this order and the restrictions on the $D$-terms for preserving or spontaneously breaking $N=1$ supersymmetry are presented.
The compactification from the eleven-dimensional Hov{r}ava-Witten orbifold to five-dimensional heterotic M-theory on a Schoen Calabi-Yau threefold is reviewed, as is the specific $SU(4)$ vector bundle leading to the heterotic standard model in the ob
We present a new perspective on the nature of quark and gluon condensates in quantum chromodynamics. We suggest that the spatial support of QCD condensates is restricted to the interiors of hadrons, since these condensates arise due to the interactio
Quantum field theories of strongly interacting matter sometimes have a useful holographic description in terms of the variables of a gravitational theory in higher dimensions. This duality maps time dependent physics in the gauge theory to time depen
We reconsider the ingredients of moduli stabilization in heterotic M-theory. On this line we close a gap in the literature deriving the Kaehler potential dependence on vector bundle moduli and charged matter. Crucial in this derivation is our supersp
According to common lore, Equations of State of field theories with gravity duals tend to be soft, with speeds of sound either below or around the conformal value of $v_s=1/sqrt{3}$. This has important consequences in particular for the physics of co