ﻻ يوجد ملخص باللغة العربية
With the explosive increase of big data in industry and academic fields, it is necessary to apply large-scale data processing systems to analysis Big Data. Arguably, Spark is state of the art in large-scale data computing systems nowadays, due to its good properties including generality, fault tolerance, high performance of in-memory data processing, and scalability. Spark adopts a flexible Resident Distributed Dataset (RDD) programming model with a set of provided transformation and action operators whose operating functions can be customized by users according to their applications. It is originally positioned as a fast and general data processing system. A large body of research efforts have been made to make it more efficient (faster) and general by considering various circumstances since its introduction. In this survey, we aim to have a thorough review of various kinds of optimization techniques on the generality and performance improvement of Spark. We introduce Spark programming model and computing system, discuss the pros and cons of Spark, and have an investigation and classification of various solving techniques in the literature. Moreover, we also introduce various data management and processing systems, machine learning algorithms and applications supported by Spark. Finally, we make a discussion on the open issues and challenges for large-scale in-memory data processing with Spark.
With the emergence of the big data age, the issue of how to obtain valuable knowledge from a dataset efficiently and accurately has attracted increasingly attention from both academia and industry. This paper presents a Parallel Random Forest (PRF) a
Network Traffic Monitoring and Analysis (NTMA) represents a key component for network management, especially to guarantee the correct operation of large-scale networks such as the Internet. As the complexity of Internet services and the volume of tra
With the era of big data, an explosive amount of information is now available. This enormous increase of Big Data in both academia and industry requires large-scale data processing systems. A large body of research is behind optimizing Sparks perform
We propose hMDAP, a hybrid framework for large-scale data analytical processing on Spark, to support multi-paradigm process (incl. OLAP, machine learning, and graph analysis etc.) in distributed environments. The framework features a three-layer data
The ever-increasing volumes of scientific data present new challenges for distributed computing and Grid technologies. The emerging Big Data revolution drives exploration in scientific fields including nanotechnology, astrophysics, high-energy physic