The phonon-mediated superconductivity in bismuthates by non-adiabatic pairing


الملخص بالإنكليزية

In the present paper, the impact of small Fermi energy on the selected parameters of the superconducting state in Ba$_{1-x}$K$_{x}$BiO$_{3}$ (BKBO) is studied at $x in (0.3, 0.4, 0.5)$. This is done by employing the adiabatic and non-adiabatic Eliashberg equations in context of the available experimental data. It is found that the retardation, strong-coupling and the non-adiabatic effects notably influence superconducting phase in BKBO. In particular, the electron-electron interaction, approximated here by the Coulomb pseudopotential, is argued to be reduced by the non-adiabatic effects that supplement retardation and allow for the phonon-mediated superconductivity. These findings are reinforced by further analysis of the isotope effect showing reduction of the isotope coefficient with respect to the canonical Bardeen-Cooper-Schrieffer (BCS) level, as caused by the interplay of all effects mentioned above. Although physics behind the isotope effect appears to be complex, its resulting behavior comply with the scenario for the conventional superconductors. In summary, obtained results confirm recent theoretical and experimental studies that suggest phonon-mediated mechanism of superconductivity in BKBO. However, they also point out that this phase cannot be properly described with the BCS theory due to the existence of somewhat unusual effects.

تحميل البحث