ﻻ يوجد ملخص باللغة العربية
For positive integers $n$ and $e$, let $kappa(n,e)$ be the minimum crossing number (the standard planar crossing number) taken over all graphs with $n$ vertices and at least $e$ edges. Pach, Spencer and Toth [Discrete and Computational Geometry 24 623--644, (2000)] showed that $kappa(n,e) n^2/e^3$ tends to a positive constant (called midrange crossing constant) as $nto infty$ and $n ll e ll n^2$, proving a conjecture of ErdH{o}s and Guy. In this note, we extend their proof to show that the midrange crossing constant exists for graph classes that satisfy a certain set of graph properties. As a corollary, we show that the the midrange crossing constant exists for the family of bipartite graphs. All these results have their analogues for rectilinear crossing numbers.
Let $mathcal G$ be an addable, minor-closed class of graphs. We prove that the zero-one law holds in monadic second-order logic (MSO) for the random graph drawn uniformly at random from all {em connected} graphs in $mathcal G$ on $n$ vertices, and th
There are several centrality measures that have been introduced and studied for real world networks. They account for the different vertex characteristics that permit them to be ranked in order of importance in the network. Betweenness centrality is
We develop a local positivity theory for movable curves on projective varieties similar to the classical Seshadri constants of nef divisors. We give analogues of the Seshadri ampleness criterion, of a characterization of the augmented base locus of a
We introduce a family of multi-way Cheeger-type constants ${h_k^{sigma}, k=1,2,ldots, n}$ on a signed graph $Gamma=(G,sigma)$ such that $h_k^{sigma}=0$ if and only if $Gamma$ has $k$ balanced connected components. These constants are switching invari
For a given class $mathcal{C}$ of graphs and given integers $m leq n$, let $f_mathcal{C}(n,m)$ be the minimal number $k$ such that every $k$ independent $n$-sets in any graph belonging to $mathcal{C}$ have a (possibly partial) rainbow independent $m$