ﻻ يوجد ملخص باللغة العربية
Machine learning has been an emerging tool for various aspects of infectious diseases including tuberculosis surveillance and detection. However, WHO provided no recommendations on using computer-aided tuberculosis detection software because of the small number of studies, methodological limitations, and limited generalizability of the findings. To quantify the generalizability of the machine-learning model, we developed a Deep Convolutional Neural Network (DCNN) model using a TB-specific CXR dataset of one population (National Library of Medicine Shenzhen No.3 Hospital) and tested it with non-TB-specific CXR dataset of another population (National Institute of Health Clinical Centers). The findings suggested that a supervised deep learning model developed by using the training dataset from one population may not have the same diagnostic performance in another population. Technical specification of CXR images, disease severity distribution, overfitting, and overdiagnosis should be examined before implementation in other settings.
Chest X-rays are the most commonly performed diagnostic examination to detect cardiopulmonary abnormalities. However, the presence of bony structures such as ribs and clavicles can obscure subtle abnormalities, resulting in diagnostic errors. This st
Tuberculosis (TB) is a chronic lung disease that occurs due to bacterial infection and is one of the top 10 leading causes of death. Accurate and early detection of TB is very important, otherwise, it could be life-threatening. In this work, we have
The gold standard for COVID-19 is RT-PCR, testing facilities for which are limited and not always optimally distributed. Test results are delayed, which impacts treatment. Expert radiologists, one of whom is a co-author, are able to diagnose COVID-19
CXRs are a crucial and extraordinarily common diagnostic tool, leading to heavy research for CAD solutions. However, both high classification accuracy and meaningful model predictions that respect and incorporate clinical taxonomies are crucial for C
Robotic weed control has seen increased research of late with its potential for boosting productivity in agriculture. Majority of works focus on developing robotics for croplands, ignoring the weed management problems facing rangeland stock farmers.