ﻻ يوجد ملخص باللغة العربية
Containing only a few percent the mass of the moon, the current asteroid belt is around three to four orders of magnitude smaller that its primordial mass inferred from disk models. Yet dynamical studies have shown that the asteroid belt could not have been depleted by more than about an order of magnitude over the past ~4 Gyr. The remainder of the mass loss must have taken place during an earlier phase of the solar systems evolution. An orbital instability in the outer solar system occurring during the process of terrestrial planet formation can reproduce the broad characteristics of the inner solar system. Here, we test the viability of this model within the constraints of the main belts low present-day mass and orbital structure. While previous studies modeled asteroids as massless test particles because of limited computing power, our work uses GPU (Graphics Processing Unit) acceleration to model a fully self-gravitating asteroid belt. We find that depletion in the main belt is related to the giant planets exact evolution within the orbital instability. Simulations that produce the closest matches to the giant planets current orbits deplete the main belt by two to three orders of magnitude. These simulated asteroid belts are also good matches to the actual asteroid belt in terms of their radial mixing and broad orbital structure.
The asteroid belt is an open window on the history of the Solar System, as it preserves records of both its formation process and its secular evolution. The progenitors of the present-day asteroids formed in the Solar Nebula almost contemporary to th
The asteroid belt contains less than a thousandth of Earths mass and is radially segregated, with S-types dominating the inner belt and C-types the outer belt. It is generally assumed that the belt formed with far more mass and was later strongly dep
The asteroid belt was dynamically shaped during and after planet formation. Despite representing a broad ring of stable orbits, the belt contains less than one one-thousandth of an Earth mass. The asteroid orbits are dynamically excited with a wide r
The solar systems dynamical state can be explained by an orbital instability among the giant planets. A recent model has proposed that the giant planet instability happened during terrestrial planet formation. This scenario has been shown to match th
The observationally complete sample of the main belt asteroids now spans more than two orders of magnitude in size and numbers more than 64,000 (excluding collisional family members). We undertook an analysis of asteroids eccentricities and their int