ﻻ يوجد ملخص باللغة العربية
This article is the third and last of a series presenting an alternative method to compute the one-loop scalar integrals. It extends the results of first two articles to the infrared divergent case. This novel method enjoys a couple of interesting features as compared with the methods found in the literature. It directly proceeds in terms of the quantities driving algebraic reduction methods. It yields a simple decision tree based on the vanishing of internal masses and one-pinched kinematic matrices which avoids a profusion of cases. Lastly, it extends to kinematics more general than the one of physical e.g. collider processes relevant at one loop. This last feature may be useful when considering the application of this method beyond one loop using generalised one-loop integrals as building blocks.
This article is the first of a series of three presenting an alternative method to compute the one-loop scalar integrals. This novel method enjoys a couple of interesting features as compared with the method closely following t Hooft and Veltman adop
This article is the second of a series of three presenting an alternative method to compute the one-loop scalar integrals. It extends the results of the first article to general complex masses. Let us remind the main features enjoyed by this method.
A framework to represent and compute two-loop $N$-point Feynman diagrams as double-integrals is discussed. The integrands are generalised one-loop type multi-point functions multiplied by simple weighting factors. The final integrations over these tw
The rational parts of 6-gluon one-loop amplitudes with scalars circulating in the loop are computed by using the newly developed method for computing the rational parts directly from Feynman integrals. We present the analytic results for the two MHV
We present a new Fortran code to calculate the scalar one-loop four-point integral with complex internal masses, based on the method of t Hooft and Veltman. The code is applicable when the external momenta fulfill a certain physical condition. In par