ﻻ يوجد ملخص باللغة العربية
High-speed high-resolution Analog-to-Digital Conversion is the key part for waveform digitization in physics experiments and many other domains. This paper presents a new fully digital correction of mismatch errors among the channels in Time Interleaved Analog-to-Digital Converter (TIADC) systems. We focus on correction with wide-band input signal, which means that we can correct the mismatch errors for any frequency point in a broad band with only one set of filter coefficients. Studies were also made to show how to apply the correction algorithm beyond the base band, i.e. other Nyquist zones in the under-sampling situation. Structure of the correction algorithm is presented in this paper, as well as simulation results. To evaluate the correction performance, we actually conducted a series of tests with two TIADC systems. The results indicate that the performance of both two TIADC systems can be greatly improved by correction, and the Effective Number Of Bits (ENOB) is successfully improved to be better than 9.5 bits and 5.5 bits for an input signal up to the bandwidth (-3dB) range in the 1.6-Gsps 14-bit and the 10-Gsps 8-bit TIADC systems, respectively. Tests were also conducted for input signal frequencies in the second Nyquist zone, which shows that the correction algorithms also work well as expected.
Time to Digital Converters (TDCs) are very common devices in particles physics experiments. A lot of off-the-shelf TDCs can be employed but the necessity of a custom DAta acQuisition (DAQ) system makes the TDCs implemented on the Field-Programmable G
A high-precision charge measurement can be achieved by the area integration of a digitized quasi-Gaussian signal after the signal passes through the shaper and analog-to-digital converter (ADC). The charge measurement contains an error due to the unc
This paper presents the new approach in implementation of analog-to-digital converter (ADC) that is based on Hopfield neural-network architecture. Hopfield neural ADC (NADC) is a type of recurrent neural network that is effective in solving simple op
Photonic analog to digital conversion offers promise to overcome the signal-to-noise ratio (SNR) and sample rate trade-off in conventional analog to digital converters (ADCs), critical for modern digital communications and signal analysis. We propose
In a growing number of applications, there is a need to digitize signals whose spectral characteristics are challenging for traditional Analog-to-Digital Converters (ADCs). Examples, among others, include systems where the ADC must acquire at once a