ﻻ يوجد ملخص باللغة العربية
Garsia and Xin gave a linear algorithm for inverting the sweep map for Fuss rational Dyck paths in $D_{m,n}$ where $m=knpm 1$. They introduced an intermediate family $mathcal{T}_n^k$ of certain standard Young tableau. Then inverting the sweep map is done by a simple walking algorithm on a $Tin mathcal{T}_n^k$. We find their idea naturally extends for $mathbf{k}^pm$-Dyck paths, and also for $mathbf{k}$-Dyck paths (reducing to $k$-Dyck paths for the equal parameter case). The intermediate object becomes a similar type of tableau in $mathcal{T}_mathbf{k}$ of different column lengths. This approach is independent of the Thomas-Williams algorithm for inverting the general modular sweep map.
A {em k-generalized Dyck path} of length $n$ is a lattice path from $(0,0)$ to $(n,0)$ in the plane integer lattice $mathbb{Z}timesmathbb{Z}$ consisting of horizontal-steps $(k, 0)$ for a given integer $kgeq 0$, up-steps $(1,1)$, and down-steps $(1,-
In this paper we study a subfamily of a classic lattice path, the emph{Dyck paths}, called emph{restricted $d$-Dyck} paths, in short $d$-Dyck. A valley of a Dyck path $P$ is a local minimum of $P$; if the difference between the heights of two consecu
Let $C_n$ be the set of Dyck paths of length $n$. In this paper, by a new automorphism of ordered trees, we prove that the statistic `number of exterior pairs, introduced by A. Denise and R. Simion, on the set $C_n$ is equidistributed with the statis
We conjecture a combinatorial formula for the monomial expansion of the image of any Schur function under the Bergeron-Garsia nabla operator. The formula involves nested labeled Dyck paths weighted by area and a suitable diagonal inversion statistic.
For any integer $mge 2$ and a set $Vsubset {1,dots,m}$, let $(m,V)$ denote the union of congruence classes of the elements in $V$ modulo $m$. We study the Hankel determinants for the number of Dyck paths with peaks avoiding the heights in the set $(m