ﻻ يوجد ملخص باللغة العربية
The invariance of the Lyapunov exponent of a chaotic signal as it propagates along a wireless transmission channel provides a theoretical base for the application of chaos in wireless communication. In additive Gaussian channel, the chaotic signal is proved to be the optimal coherent communication waveform in the sense of using the very simple matched filter to obtain the maximum signal-to-noise ratio. The properties of chaos can be used to reduce simply and effectively the Inter-Symbol Interference (ISI) and to achieve low bit error rate in the wireless communication system. However, chaotic signals need very wide bandwidth to be transmitted in the practical channel, which is difficult for the practical transducer or antenna to convert such a broad band signal. To solve this problem, in this work, the chaotic signal is applied to a radio-wave communication system, and the corresponding coding and decoding algorithms are proposed. A hybrid chaotic system is used as the pulse-shaping filter to obtain the baseband signal, and the corresponding matched filter is used at the receiver, instead of the conventional low-pass filter, to maximize the signal-to-noise ratio. At the same time, the symbol judgment threshold determined by the chaos property is used to reduce the Inter-Symbol Interference (ISI) effect. Simulations and virtual channel experiments show that the radio-wave communication system using chaos obtains lower bit error rate in the multi-path transmission channel compared with the traditional radio-wave communication system using Binary Phase Shift Keying (BPSK) modulation technology and channel equalization.
Some new properties of the chaotic signal have been implemented in communication system applications recently. However, due to the broadband property of the chaotic signal, it is very difficult for a practical transducer or antenna to convert such a
Some new findings for chaos-based wireless communication systems have been identified recently. First, chaos has proven to be the optimal communication waveform because chaotic signals can achieve the maximum signal to noise ratio at receiver with th
In this paper, we study optimal waveform design to maximize mutual information (MI) for a joint communication and (radio) sensing (JCAS, a.k.a., radar-communication) multi-input multi-output (MIMO) downlink system. We consider a typical packet-based
We design and experimentally demonstrate a radio frequency interference management system with free-space optical communication and photonic signal processing. The system provides real-time interference cancellation in 6 GHz wide bandwidth.
Chaotic dynamics can be quite heterogeneous in the sense that in some regions the dynamics are unstable in more directions than in other regions. When trajectories wander between these regions, the dynamics is complicated. We say a chaotic invariant