ﻻ يوجد ملخص باللغة العربية
Distant long-period comet C/2017 K2 has been outside the planetary region of the solar system for 3 Myr, negating the possibility that heat retained from the previous perihelion could be responsible for its activity. This inbound comet is also too cold for water ice to sublimate and too cold for amorphous water ice, if present, to crystallize. C/2017 K2 thus presents an ideal target in which to investigate the mechanisms responsible for activity in distant comets. We have used Hubble Space Telescope to study the comet in the pre-perihelion distance range 13.8 to 15.9 AU. The coma maintains a logarithmic surface brightness gradient $m = -1.010pm$0.004, consistent with steady-state mass loss. The absence of a radiation pressure swept tail indicates that the effective particle size is large (0.1 mm) and the mass loss rate is $sim$200 kg s$^{-1}$, remarkable for a comet still beyond the orbit of Saturn. Extrapolation of the photometry indicates that activity began in 2012.1, at 25.9$pm$0.9 AU, where the blackbody temperature is only 55 K. This large distance and low temperature suggest that cometary activity is driven by the sublimation of a super-volatile ice (e.g.~CO), presumably preserved by K2s long-term residence in the Oort cloud. The mass loss rate can be sustained by CO sublimation from an area $lesssim 2$ km$^2$, if located near the hot sub-solar point on the nucleus. However, while the drag force from sublimated CO is sufficient to lift millimeter sized particles against the gravity of the cometary nucleus, it is 10$^2$ to 10$^3$ times too small to eject these particles against inter-particle cohesion. Our observations thus require either a new understanding of the physics of inter-particle cohesion or the introduction of another mechanism to drive distant cometary mass loss. We suggest thermal fracture and electrostatic supercharging in this context.
Optical observations of the Oort cloud comet C/2017 K2 (PANSTARRS) show that its activity began at large heliocentric distances (up to 35 au), which cannot be explained by either the sublimation or the crystallization of water ice. Supervolatile subl
We present a study of comet C/2017 K2 (PANSTARRS) using prediscovery archival data taken from 2013 to 2017. Our measurements show that the comet has been marginally increasing in activity since at least 2013 May (heliocentric distance of $r_{mathrm{H
Comet C/2017 K2 (PANSTARRS) was discovered by the Pan-STARRS1 (PS1) Survey on 2017 May 21 at a distance 16.09 au from the Sun, the second most distant discovery of an active comet. Pre-discovery images in the PS1 archive back to 2014 and additional d
(Abreviated) Comet C/2017 K2 PANSTARRS drew attention to its activity already at a time of its discovery in May 2017 when it was about 16 au from the Sun. This Oort spike comet will approach its perihelion in December 2022, and the question about its
A sequence of events, dominated by two outbursts and ending with the preperihelion disintegration of comet C/2017 S3, is examined. The onset times of the outbursts are determined with high accuracy from the light curve of the nuclear condensation bef