ترغب بنشر مسار تعليمي؟ اضغط هنا

Polyphonic audio tagging with sequentially labelled data using CRNN with learnable gated linear units

99   0   0.0 ( 0 )
 نشر من قبل Yuanbo Hou
 تاريخ النشر 2018
والبحث باللغة English




اسأل ChatGPT حول البحث

Audio tagging aims to detect the types of sound events occurring in an audio recording. To tag the polyphonic audio recordings, we propose to use Connectionist Temporal Classification (CTC) loss function on the top of Convolutional Recurrent Neural Network (CRNN) with learnable Gated Linear Units (GLU-CTC), based on a new type of audio label data: Sequentially Labelled Data (SLD). In GLU-CTC, CTC objective function maps the frame-level probability of labels to clip-level probability of labels. To compare the mapping ability of GLU-CTC for sound events, we train a CRNN with GLU based on Global Max Pooling (GLU-GMP) and a CRNN with GLU based on Global Average Pooling (GLU-GAP). And we also compare the proposed GLU-CTC system with the baseline system, which is a CRNN trained using CTC loss function without GLU. The experiments show that the GLU-CTC achieves an Area Under Curve (AUC) score of 0.882 in audio tagging, outperforming the GLU-GMP of 0.803, GLU-GAP of 0.766 and baseline system of 0.837. That means based on the same CRNN model with GLU, the performance of CTC mapping is better than the GMP and GAP mapping. Given both based on the CTC mapping, the CRNN with GLU outperforms the CRNN without GLU.



قيم البحث

اقرأ أيضاً

Audio tagging aims to predict one or several labels in an audio clip. Many previous works use weakly labelled data (WLD) for audio tagging, where only presence or absence of sound events is known, but the order of sound events is unknown. To use the order information of sound events, we propose sequential labelled data (SLD), where both the presence or absence and the order information of sound events are known. To utilize SLD in audio tagging, we propose a Convolutional Recurrent Neural Network followed by a Connectionist Temporal Classification (CRNN-CTC) objective function to map from an audio clip spectrogram to SLD. Experiments show that CRNN-CTC obtains an Area Under Curve (AUC) score of 0.986 in audio tagging, outperforming the baseline CRNN of 0.908 and 0.815 with Max Pooling and Average Pooling, respectively. In addition, we show CRNN-CTC has the ability to predict the order of sound events in an audio clip.
Sound event detection (SED) methods typically rely on either strongly labelled data or weakly labelled data. As an alternative, sequentially labelled data (SLD) was proposed. In SLD, the events and the order of events in audio clips are known, withou t knowing the occurrence time of events. This paper proposes a connectionist temporal classification (CTC) based SED system that uses SLD instead of strongly labelled data, with a novel unsupervised clustering stage. Experiments on 41 classes of sound events show that the proposed two-stage method trained on SLD achieves performance comparable to the previous state-of-the-art SED system trained on strongly labelled data, and is far better than another state-of-the-art SED system trained on weakly labelled data, which indicates the effectiveness of the proposed two-stage method trained on SLD without any onset/offset time of sound events.
Lyrics alignment in long music recordings can be memory exhaustive when performed in a single pass. In this study, we present a novel method that performs audio-to-lyrics alignment with a low memory consumption footprint regardless of the duration of the music recording. The proposed system first spots the anchoring words within the audio signal. With respect to these anchors, the recording is then segmented and a second-pass alignment is performed to obtain the word timings. We show that our audio-to-lyrics alignment system performs competitively with the state-of-the-art, while requiring much less computational resources. In addition, we utilise our lyrics alignment system to segment the music recordings into sentence-level chunks. Notably on the segmented recordings, we report the lyrics transcription scores on a number of benchmark test sets. Finally, our experiments highlight the importance of the source separation step for good performance on the transcription and alignment tasks. For reproducibility, we publicly share our code with the research community.
Speaker counting is the task of estimating the number of people that are simultaneously speaking in an audio recording. For several audio processing tasks such as speaker diarization, separation, localization and tracking, knowing the number of speak ers at each timestep is a prerequisite, or at least it can be a strong advantage, in addition to enabling a low latency processing. For that purpose, we address the speaker counting problem with a multichannel convolutional recurrent neural network which produces an estimation at a short-term frame resolution. We trained the network to predict up to 5 concurrent speakers in a multichannel mixture, with simulated data including many different conditions in terms of source and microphone positions, reverberation, and noise. The network can predict the number of speakers with good accuracy at frame resolution.
Personalized recommendation on new track releases has always been a challenging problem in the music industry. To combat this problem, we first explore user listening history and demographics to construct a user embedding representing the users music preference. With the user embedding and audio data from users liked and disliked tracks, an audio embedding can be obtained for each track using metric learning with Siamese networks. For a new track, we can decide the best group of users to recommend by computing the similarity between the tracks audio embedding and different user embeddings, respectively. The proposed system yields state-of-the-art performance on content-based music recommendation tested with millions of users and tracks. Also, we extract audio embeddings as features for music genre classification tasks. The results show the generalization ability of our audio embeddings.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا