ترغب بنشر مسار تعليمي؟ اضغط هنا

HATS-70b: A 13 Mjup brown dwarf transiting an A star

113   0   0.0 ( 0 )
 نشر من قبل George Zhou
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the discovery of HATS-70b, a transiting brown dwarf at the deuterium burning limit. HATS-70b has a mass of Mp=12.9 +1.8/-1.6 Mjup and a radius of Rp=1.384 +0.079/-0.074 Rjup, residing in a close-in orbit with a period of 1.89 days. The host star is a M*=1.78 +/- 0.12 Msun A star rotating at vsini=40.61 +0.32/-0.35 km/s, enabling us to characterize the spectroscopic transit of the brown dwarf via Doppler tomography. We find that HATS-70b, like other massive planets and brown dwarfs previously sampled, orbits in a low projected-obliquity orbit with lambda=8.9 +5.6/-4.5 deg. The low obliquities of these systems is surprising given all brown dwarf and massive planets with obliquities measured orbit stars hotter than the Kraft break. This trend is tentatively inconsistent with dynamically chaotic migration for systems with massive companions, though the stronger tidal influence of these companions makes it difficult to draw conclusions on the primordial obliquity distribution of this population. We also introduce a modeling scheme for planets around rapidly rotating stars, accounting for the influence of gravity darkening on the derived stellar and planetary parameters.



قيم البحث

اقرأ أيضاً

We report the discovery of a 61-Jupiter-mass brown dwarf, which transits its F8V host star, WASP-30, every 4.16 days. From a range of age indicators we estimate the system age to be 1-2 Gyr. We derive a radius (0.89 +/- 0.02 RJup) for the companion t hat is consistent with that predicted (0.914 RJup) by a model of a 1-Gyr-old, non-irradiated brown dwarf with a dusty atmosphere. The location of WASP-30b in the minimum of the mass-radius relation is consistent with the quantitative prediction of Chabrier & Baraffe (2000), thus confirming the theory.
IW ../submit_V2/abstract.txt ( Row 1 Col 1 6:48 Ctrl-K H for help We report the discovery by the HATSouth network of HATS-7b, a transiting Super-Neptune with a mass of 0.120+/-0.012MJ, a radius of 0.563+/-(0.046,0.034)RJ, and an orbital period of 3.1 853days. The host star is a moderately bright (V=13.340+/-0.010mag, K_S=10.976+/-0.026mag) K dwarf star with a mass of 0.849+/-0.027Msun , a radius of 0.815+/-(0.049,-0.035)Rsun, and a metallicity of [Fe/H]=+0.250+/-0.080. The star is photometrically quiet to within the precision of the HATSouth measurements and has low RV jitter. HATS-7b is the second smallest radius planet discovered by a wide-field ground-based transit survey, and one of only a handful of Neptune-size planets with mass and radius determined to 10% precision. Theoretical modeling of HATS-7b yields a hydrogen-helium fraction of 18+/-4% (rock-iron core and H2-He envelope), or 9+/-4% (ice core and H2-He envelope), i.e.it has a composition broadly similar to that of Uranus and Neptune, and very different from that of Saturn, which has 75% of its mass in H2-He. Based on a sample of transiting exoplanets with accurately (<20%) determined parameters, we establish approximate power-law relations for the envelopes of the mass-density distribution of exoplanets. HATS-7b, which, together with the recently discovered HATS-8b, is one of the first two transiting super-Neptunes discovered in the Southern sky, is a prime target for additional follow-up observations with Southern hemisphere facilities to characterize the atmospheres of Super-Neptunes (which we define as objects with mass greater than that of Neptune, and smaller than halfway between that of Neptune and Saturn, i.e. 0.054 MJ<Mp<0.18 MJ).
We report the discovery of HATS-71b, a transiting gas giant planet on a P = 3.7955 day orbit around a G = 15.35 mag M3 dwarf star. HATS-71 is the coolest M dwarf star known to host a hot Jupiter. The loss of light during transits is 4.7%, more than a ny other confirmed transiting planet system. The planet was identified as a candidate by the ground-based HATSouth transit survey. It was confirmed using ground-based photometry, spectroscopy, and imaging, as well as space-based photometry from the NASA TESS mission (TIC 234523599). Combining all of these data, and utilizing Gaia DR2, we find that the planet has a radius of $1.080 pm 0.016 R_J$ and mass of $0.45 pm 0.24 M_J$ (95% confidence upper limit of $0.81 M_J$ ), while the star has a mass of $0.569 pm^{0.042}_{0.069},M_odot$ and a radius of $0.5161pm^{0.0053}_{0.0099},R_odot$. The Gaia DR2 data show that HATS-71 lies near the binary main sequence in the Hertzsprung-Russell diagram, suggesting that there may be an unresolved stellar binary companion. All of the available data is well fitted by a model in which there is a secondary star of mass $0.24 M_odot$, although we caution that at present there is no direct spectroscopic or imaging evidence for such a companion. Even if there does exist such a stellar companion, the radius and mass of the planet would be only marginally different from the values we have calculated under the assumption that the star is single.
282 - D. Bayliss , G. Zhou , K. Penev 2013
We report the discovery by the HATSouth survey of HATS-3b, a transiting extrasolar planet orbiting a V=12.4 F-dwarf star. HATS-3b has a period of P = 3.5479d, mass of Mp = 1.07MJ, and radius of Rp = 1.38RJ. Given the radius of the planet, the brightn ess of the host star, and the stellar rotational velocity (vsini = 9.0km/s), this system will make an interesting target for future observations to measure the Rossiter-McLaughlin effect and determine its spin-orbit alignment. We detail the low/medium-resolution reconnaissance spectroscopy that we are now using to deal with large numbers of transiting planet candidates produced by the HATSouth survey. We show that this important step in discovering planets produces logg and Teff parameters at a precision suitable for efficient candidate vetting, as well as efficiently identifying stellar mass eclipsing binaries with radial velocity semi-amplitudes as low as 1 km/s.
We report the discovery by the HATSouth survey of HATS-6b, an extrasolar planet transiting a V=15.2 mag, i=13.7 mag M1V star with a mass of 0.57 Msun and a radius of 0.57 Rsun. HATS-6b has a period of P = 3.3253 d, mass of Mp=0.32 Mjup, radius of Rp= 1.00 Rjup, and zero-albedo equilibrium temperature of Teq=712.8+-5.1 K. HATS-6 is one of the lowest mass stars known to host a close-in gas giant planet, and its transits are among the deepest of any known transiting planet system. We discuss the follow-up opportunities afforded by this system, noting that despite the faintness of the host star, it is expected to have the highest K-band S/N transmission spectrum among known gas giant planets with Teq < 750 K. In order to characterize the star we present a new set of empirical relations between the density, radius, mass, bolometric magnitude, and V, J, H and K-band bolometric corrections for main sequence stars with M < 0.80 Msun, or spectral types later than K5. These relations are calibrated using eclipsing binary components as well as members of resolved binary systems. We account for intrinsic scatter in the relations in a self-consistent manner. We show that from the transit-based stellar density alone it is possible to measure the mass and radius of a ~0.6 Msun star to ~7% and ~2% precision, respectively. Incorporating additional information, such as the V-K color, or an absolute magnitude, allows the precision to be improved by up to a factor of two.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا