ترغب بنشر مسار تعليمي؟ اضغط هنا

Transverse Confinement of Photon Position in Light-Atom Interaction

66   0   0.0 ( 0 )
 نشر من قبل Jun Sun
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In light-pulsed atom interferometry, the phase accumulated by atoms depends on the effective wave vector of the absorbed photons. In this work, we proposed a theory model to analyses the effective wave vector of photons in structured light. As for monochromatic optical field, a transverse confinement could lead to diffraction. We put forward that in light-atom interaction, the atom wave function could also provide a transverse confinement thus affect the effective wave vector of the absorbed photons. We calculated the relative shift of the photon effective wave vector when an atom with a Gaussian wave function absorbs one photon at the waist in a Gaussian beam. This shift could lead to a systematic effect related to atom spatial distribution in high precision experiment based on light-pulsed atom interferometry.



قيم البحث

اقرأ أيضاً

We propose a method to exploit high finesse optical resonators for light assisted coherent manipulation of atomic ensembles, overcoming the limit imposed by the finite response time of the cavity. The key element of our scheme is to rapidly switch th e interaction between the atoms and the cavity field with an auxiliary control process as, for example, the light shift induced by an optical beam. The scheme is applicable to many different atomic species, both in trapped and free fall configurations, and can be adopted to control the internal and/or external atomic degrees of freedom. Our method will open new possibilities in cavity-aided atom interferometry and in the preparation of highly non-classical atomic states.
We have performed calculations of attosecond laser-atom interactions for laser intensities where interesting two and three photon effects become relevant. In particular, we examine the case of hole burning in the initial orbital. Hole burning is pres ent when the laser pulse duration is shorter than the classical radial period because the electron preferentially absorbs the photon near the nucleus. We also examine how 3 photon Raman process can lead to a time delay in the outgoing electron for the energy near one photon absorption. For excitation out of the hydrogen $2s$ state, an intensity of $2.2times 10^{16}$ W/cm$^2$ leads to a 6 attosecond delay of the outgoing electron. We argue that this delay is due to the hole burning in the initial state.
273 - Peng Xu , Jiaheng Yang , Min Liu 2015
Two-atom systems in small traps are of fundamental interest, first of all for understanding the role of interactions in degenerate cold gases and for the creation of quantum gates in quantum information processing with single-atom traps. One of the k ey quantities is the inelastic relaxation (decay) time when one of the atoms or both are in a higher hyperfine state. Here we measure this quantity in a heteronuclear system of $^{87}$Rb and $^{85}$Rb in a micro optical trap and demonstrate experimentally and theoretically the presence of both fast and slow relaxation processes, depending on the choice of the initial hyperfine states. The developed experimental method allows us to single out a particular relaxation process and, in this sense, our experiment is a superclean platform for collisional physics studies. Our results have also implications for engineering of quantum states via controlled collisions and creation of two-qubit quantum gates.
We demonstrate the production of high density cold atom samples (2e14 atoms/cc) in a simple optical lattice formed with YAG light that is diffracted from a holographic phase plate. A loading protocol is described that results in 10,000 atoms per latt ice site. Rapid free evaporation leads to phase space densities of 1/150 within 50 msec. The resulting small, high density atomic clouds are very attractive for a number of experiments, including ultracold Rydberg atom physics.
In spatially structured strong laser fields, quantum electrodynamical vacuum behaves like a nonlinear Kerr medium with modulated third-order susceptibility where new coherent nonlinear effects arise due to modulation. We consider the enhancement of v acuum polarization and magnetization via coherent spatial vacuum effects in the photon-photon interaction process during scattering of a probe laser beam on parallel focused laser beams. Both processes of elastic and inelastic four wave-mixing in structured QED vacuum accompanied with Bragg interference are investigated. The phase-matching conditions and coherent effects in the presence of Bragg grating are analyzed for photon-photon scattering.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا