ﻻ يوجد ملخص باللغة العربية
This paper addresses one of the classical problems in random matrix theory-- finding the distribution of the maximum eigenvalue of the correlated Wishart unitary ensemble. In particular, we derive a new exact expression for the cumulative distribution function (c.d.f.) of the maximum eigenvalue of a $2times 2$ correlated non-central Wishart matrix with rank-$1$ mean. By using this new result, we derive an exact analytical expression for the outage probability of $2times 2$ multiple-input multiple-output maximum-ratio-combining (MIMO-MRC) in Rician fading with transmit correlation and a strong line-of-sight (LoS) component (rank-$1$ channel mean). We also show that the outage performance is affected by the relative alignment of the eigen-spaces of the mean and correlation matrices. In general, when the LoS path aligns with the least eigenvector of the correlation matrix, in the {it high} transmit signal-to-noise ratio (SNR) regime, the outage gradually improves with the increasing correlation. Moreover, we show that as $K$ (Rician factor) grows large, the outage event can be approximately characterized by the c.d.f. of a certain Gaussian random variable.
Approximate Symbol error rate (SER), outage probability and rate expressions are derived for receive diversity system employing optimum combining when both the desired and the interfering signals are subjected to Rician fading, for the cases of a) eq
This paper considers uplink massive multiple-input multiple-output (MIMO) systems with lowresolution analog-to-digital converters (ADCs) over Rician fading channels. Maximum-ratio-combining (MRC) and zero-forcing (ZF) receivers are considered under t
We analyze the performance of multiple input/multiple output (MIMO) communications systems employing spatial multiplexing and zero-forcing detection (ZF). The distribution of the ZF signal-to-noise ratio (SNR) is characterized when either the intende
For multiple-input/multiple-output (MIMO) spatial multiplexing with zero-forcing detection (ZF), signal-to-noise ratio (SNR) analysis for Rician fading involves the cumbersome noncentral-Wishart distribution (NCWD) of the transmit sample-correlation
In this paper, an analytical framework for evaluating the performance of scalable cell-free massive MIMO (SCF-mMIMO) systems in which all user equipments (UEs) and access points (APs) employ finite resolution digital-to-analog converters (DACs) and a