ﻻ يوجد ملخص باللغة العربية
Given a dense subset $A$ of the first $n$ positive integers, we provide a short proof showing that for $p=omega(n^{-2/3})$ the so-called {sl randomly perturbed} set $A cup [n]_p$ a.a.s. has the property that any $2$-colouring of it has a monochromatic Schur triple, i.e. a triple of the form $(a,b,a+b)$. This result is optimal since there are dense sets $A$, for which $Acup [n]_p$ does not possess this property for $p=o(n^{-2/3})$.
Given an $n$-vertex graph $G$ with minimum degree at least $d n$ for some fixed $d > 0$, the distribution $G cup mathbb{G}(n,p)$ over the supergraphs of $G$ is referred to as a (random) {sl perturbation} of $G$. We consider the distribution of edge-c
For two graphs $G$ and $H$, write $G stackrel{mathrm{rbw}}{longrightarrow} H$ if $G$ has the property that every {sl proper} colouring of its edges yields a {sl rainbow} copy of $H$. We study the thresholds for such so-called {sl anti-Ramsey} prope
For two graphs $G$ and $H$, write $G stackrel{mathrm{rbw}}{longrightarrow} H$ if $G$ has the property that every emph{proper} colouring of its edges yields a emph{rainbow} copy of $H$. We study the thresholds for such so-called emph{anti-Ramsey} pr
We determine, up to a multiplicative constant, the optimal number of random edges that need to be added to a $k$-graph $H$ with minimum vertex degree $Omega(n^{k-1})$ to ensure an $F$-factor with high probability, for any $F$ that belongs to a certai
The dynamics of escape from an attractive state due to random perturbations is of central interest to many areas in science. Previous studies of escape in chaotic systems have rather focused on the case of unbounded noise, usually assumed to have Gau