ترغب بنشر مسار تعليمي؟ اضغط هنا

Gallai-Ramsey numbers for a class of graphs with five vertices

82   0   0.0 ( 0 )
 نشر من قبل Ligong Wang
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Given two graphs $G$ and $H$, the $k$-colored Gallai-Ramsey number $gr_k(G : H)$ is defined to be the minimum integer $n$ such that every $k$-coloring of the complete graph on $n$ vertices contains either a rainbow copy of $G$ or a monochromatic copy of $H$. In this paper, we consider $gr_k(K_3 : H)$ where $H$ is a connected graph with five vertices and at most six edges. There are in total thirteen graphs in this graph class, and the Gallai-Ramsey numbers for some of them have been studied step by step in several papers. We determine all the Gallai-Ramsey numbers for the remaining graphs, and we also obtain some related results for a class of unicyclic graphs.



قيم البحث

اقرأ أيضاً

Given graphs $G$ and $H$ and a positive integer $k$, the emph{Gallai-Ramsey number}, denoted by $gr_{k}(G : H)$ is defined to be the minimum integer $n$ such that every coloring of $K_{n}$ using at most $k$ colors will contain either a rainbow copy o f $G$ or a monochromatic copy of $H$. We consider this question in the cases where $G in {P_{4}, P_{5}}$. In the case where $G = P_{4}$, we completely solve the Gallai-Ramsey question by reducing to the $2$-color Ramsey numbers. In the case where $G = P_{5}$, we conjecture that the problem reduces to the $3$-color Ramsey numbers and provide several results in support of this conjecture.
In this paper, we consider a variant of Ramsey numbers which we call complementary Ramsey numbers $bar{R}(m,t,s)$. We first establish their connections to pairs of Ramsey $(s,t)$-graphs. Using the classification of Ramsey $(s,t)$-graphs for small $s, t$, we determine the complementary Ramsey numbers $bar{R}(m,t,s)$ for $(s,t)=(4,4)$ and $(3,6)$.
Given any graph $H$, a graph $G$ is said to be $q$-Ramsey for $H$ if every coloring of the edges of $G$ with $q$ colors yields a monochromatic subgraph isomorphic to $H$. Further, such a graph $G$ is said to be minimal $q$-Ramsey for $H$ if additiona lly no proper subgraph $G$ of $G$ is $q$-Ramsey for $H$. In 1976, Burr, ErdH{o}s, and Lovasz initiated the study of the parameter $s_q(H)$, defined as the smallest minimum degree among all minimal $q$-Ramsey graphs for $H$. In this paper, we consider the problem of determining how many vertices of degree $s_q(H)$ a minimal $q$-Ramsey graph for $H$ can contain. Specifically, we seek to identify graphs for which a minimal $q$-Ramsey graph can contain arbitrarily many such vertices. We call a graph satisfying this property $s_q$-abundant. Among other results, we prove that every cycle is $s_q$-abundant for any integer $qgeq 2$. We also discuss the cases when $H$ is a clique or a clique with a pendant edge, extending previous results of Burr et al. and Fox et al. To prove our results and construct suitable minimal Ramsey graphs, we develop certain new gadget graphs, called pattern gadgets, which generalize and extend earlier constructions that have proven useful in the study of minimal Ramsey graphs. These new gadgets might be of independent interest.
We estimate Ramsey numbers for bipartite graphs with small bandwidth and bounded maximum degree. In particular we determine asymptotically the two and three color Ramsey numbers for grid graphs. More generally, we determine asymptotically the two col or Ramsey number for bipartite graphs with small bandwidth and bounded maximum degree and the three color Ramsey number for such graphs with the additional assumption that the bipartite graph is balanced.
228 - Martin Rolek , Zi-Xia Song 2018
Given graphs $H_1, dots, H_t$, a graph $G$ is $(H_1, dots, H_t)$-Ramsey-minimal if every $t$-coloring of the edges of $G$ contains a monochromatic $H_i$ in color $i$ for some $iin{1, dots, t}$, but any proper subgraph of $G $ does not possess this pr operty. We define $mathcal{R}_{min}(H_1, dots, H_t)$ to be the family of $(H_1, dots, H_t)$-Ramsey-minimal graphs. A graph $G$ is dfn{$mathcal{R}_{min}(H_1, dots, H_t)$-saturated} if no element of $mathcal{R}_{min}(H_1, dots, H_t)$ is a subgraph of $G$, but for any edge $e$ in $overline{G}$, some element of $mathcal{R}_{min}(H_1, dots, H_t)$ is a subgraph of $G + e$. We define $sat(n, mathcal{R}_{min}(H_1, dots, H_t))$ to be the minimum number of edges over all $mathcal{R}_{min}(H_1, dots, H_t)$-saturated graphs on $n$ vertices. In 1987, Hanson and Toft conjectured that $sat(n, mathcal{R}_{min}(K_{k_1}, dots, K_{k_t}) )= (r - 2)(n - r + 2)+binom{r - 2}{2} $ for $n ge r$, where $r=r(K_{k_1}, dots, K_{k_t})$ is the classical Ramsey number for complete graphs. The first non-trivial case of Hanson and Tofts conjecture for sufficiently large $n$ was setteled in 2011, and is so far the only settled case. Motivated by Hanson and Tofts conjecture, we study the minimum number of edges over all $mathcal{R}_{min}(K_3, mathcal{T}_k)$-saturated graphs on $n$ vertices, where $mathcal{T}_k$ is the family of all trees on $k$ vertices. We show that for $n ge 18$, $sat(n, mathcal{R}_{min}(K_3, mathcal{T}_4)) =lfloor {5n}/{2}rfloor$. For $k ge 5$ and $n ge 2k + (lceil k/2 rceil +1) lceil k/2 rceil -2$, we obtain an asymptotic bound for $sat(n, mathcal{R}_{min}(K_3, mathcal{T}_k))$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا