ﻻ يوجد ملخص باللغة العربية
The pursuit of ever more precise measures of time and frequency is likely to lead to the eventual redefinition of the second in terms of an optical atomic transition. To ensure continuity with the current definition, based on a microwave transition between hyperfine levels in ground-state $^{133}$Cs, it is necessary to measure the absolute frequency of candidate standards, which is done by comparing against a primary cesium reference. A key verification of this process can be achieved by performing a loop closure$-$comparing frequency ratios derived from absolute frequency measurements against ratios determined from direct optical comparisons. We measure the $^1$S$_0!rightarrow^3$P$_0$ transition of $^{171}$Yb by comparing the clock frequency to an international frequency standard with the aid of a maser ensemble serving as a flywheel oscillator. Our measurements consist of 79 separate runs spanning eight months, and we determine the absolute frequency to be 518 295 836 590 863.71(11) Hz, the uncertainty of which is equivalent to a fractional frequency of $2.1times10^{-16}$. This absolute frequency measurement, the most accurate reported for any transition, allows us to close the Cs-Yb-Sr-Cs frequency measurement loop at an uncertainty of $<$3$times10^{-16}$, limited by the current realization of the SI second. We use these measurements to tighten the constraints on variation of the electron-to-proton mass ratio, $mu=m_e/m_p$. Incorporating our measurements with the entire record of Yb and Sr absolute frequency measurements, we infer a coupling coefficient to gravitational potential of $k_mathrm{mu}=(-1.9pm 9.4)times10^{-7}$ and a drift with respect to time of $frac{dotmu}{mu}=(5.3 pm 6.5)times10^{-17}/$yr.
Progress in realizing the SI second had multiple technological impacts and enabled to further constraint theoretical models in fundamental physics. Caesium microwave fountains, realizing best the second according to its current definition with a rela
Fiber-based remote comparison of $^{87}$Sr lattice clocks in 24 km distant laboratories is demonstrated. The instability of the comparison reaches $5times10^{-16}$ over an averaging time of 1000 s, which is two orders of magnitude shorter than that o
In this article, we report on the work done with the LNE-SYRTE atomic clock ensemble during the last 10 years. We cover progress made in atomic fountains and in their application to timekeeping. We also cover the development of optical lattice clocks
Optical frequency standards, lasers stabilized to atomic or molecular transitions, are widely used in length metrology and laser ranging, provide a backbone for optical communications and lie at the heart of next-generation optical atomic clocks. Her
In the last ten years extraordinary results in time and frequency metrology have been demonstrated. Frequency-stabilization techniques for continuous-wave lasers and femto-second optical frequency combs have enabled a rapid development of frequency s