ترغب بنشر مسار تعليمي؟ اضغط هنا

LoANs: Weakly Supervised Object Detection with Localizer Assessor Networks

88   0   0.0 ( 0 )
 نشر من قبل Christian Bartz
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Recently, deep neural networks have achieved remarkable performance on the task of object detection and recognition. The reason for this success is mainly grounded in the availability of large scale, fully annotated datasets, but the creation of such a dataset is a complicated and costly task. In this paper, we propose a novel method for weakly supervised object detection that simplifies the process of gathering data for training an object detector. We train an ensemble of two models that work together in a student-teacher fashion. Our student (localizer) is a model that learns to localize an object, the teacher (assessor) assesses the quality of the localization and provides feedback to the student. The student uses this feedback to learn how to localize objects and is thus entirely supervised by the teacher, as we are using no labels for training the localizer. In our experiments, we show that our model is very robust to noise and reaches competitive performance compared to a state-of-the-art fully supervised approach. We also show the simplicity of creating a new dataset, based on a few videos (e.g. downloaded from YouTube) and artificially generated data.



قيم البحث

اقرأ أيضاً

A large gap exists between fully-supervised object detection and weakly-supervised object detection. To narrow this gap, some methods consider knowledge transfer from additional fully-supervised dataset. But these methods do not fully exploit discrim inative category information in the fully-supervised dataset, thus causing low mAP. To solve this issue, we propose a novel category transfer framework for weakly supervised object detection. The intuition is to fully leverage both visually-discriminative and semantically-correlated category information in the fully-supervised dataset to enhance the object-classification ability of a weakly-supervised detector. To handle overlapping category transfer, we propose a double-supervision mean teacher to gather common category information and bridge the domain gap between two datasets. To handle non-overlapping category transfer, we propose a semantic graph convolutional network to promote the aggregation of semantic features between correlated categories. Experiments are conducted with Pascal VOC 2007 as the target weakly-supervised dataset and COCO as the source fully-supervised dataset. Our category transfer framework achieves 63.5% mAP and 80.3% CorLoc with 5 overlapping categories between two datasets, which outperforms the state-of-the-art methods. Codes are avaliable at https://github.com/MediaBrain-SJTU/CaT.
179 - Wangbo Zhao , Jing Zhang , Long Li 2021
Significant performance improvement has been achieved for fully-supervised video salient object detection with the pixel-wise labeled training datasets, which are time-consuming and expensive to obtain. To relieve the burden of data annotation, we pr esent the first weakly supervised video salient object detection model based on relabeled fixation guided scribble annotations. Specifically, an Appearance-motion fusion module and bidirectional ConvLSTM based framework are proposed to achieve effective multi-modal learning and long-term temporal context modeling based on our new weak annotations. Further, we design a novel foreground-background similarity loss to further explore the labeling similarity across frames. A weak annotation boosting strategy is also introduced to boost our model performance with a new pseudo-label generation technique. Extensive experimental results on six benchmark video saliency detection datasets illustrate the effectiveness of our solution.
In this paper, we propose an effective knowledge transfer framework to boost the weakly supervised object detection accuracy with the help of an external fully-annotated source dataset, whose categories may not overlap with the target domain. This se tting is of great practical value due to the existence of many off-the-shelf detection datasets. To more effectively utilize the source dataset, we propose to iteratively transfer the knowledge from the source domain by a one-class universal detector and learn the target-domain detector. The box-level pseudo ground truths mined by the target-domain detector in each iteration effectively improve the one-class universal detector. Therefore, the knowledge in the source dataset is more thoroughly exploited and leveraged. Extensive experiments are conducted with Pascal VOC 2007 as the target weakly-annotated dataset and COCO/ImageNet as the source fully-annotated dataset. With the proposed solution, we achieved an mAP of $59.7%$ detection performance on the VOC test set and an mAP of $60.2%$ after retraining a fully supervised Faster RCNN with the mined pseudo ground truths. This is significantly better than any previously known results in related literature and sets a new state-of-the-art of weakly supervised object detection under the knowledge transfer setting. Code: url{https://github.com/mikuhatsune/wsod_transfer}.
Object detection when provided image-level labels instead of instance-level labels (i.e., bounding boxes) during training is an important problem in computer vision, since large scale image datasets with instance-level labels are extremely costly to obtain. In this paper, we address this challenging problem by developing an Expectation-Maximization (EM) based object detection method using deep convolutional neural networks (CNNs). Our method is applicable to both the weakly-supervised and semi-supervised settings. Extensive experiments on PASCAL VOC 2007 benchmark show that (1) in the weakly supervised setting, our method provides significant detection performance improvement over current state-of-the-art methods, (2) having access to a small number of strongly (instance-level) annotated images, our method can almost match the performace of the fully supervised Fast RCNN. We share our source code at https://github.com/ZiangYan/EM-WSD.
Training object detectors with only image-level annotations is very challenging because the target objects are often surrounded by a large number of background clutters. Many existing approaches tackle this problem through object proposal mining. How ever, the collected positive regions are either low in precision or lack of diversity, and the strategy of collecting negative regions is not carefully designed, neither. Moreover, training is often slow because region selection and object detector training are processed separately. In this context, the primary contribution of this work is to improve weakly supervised detection with an optimized region selection strategy. The proposed method collects purified positive training regions by progressively removing easy background clutters, and selects discriminative negative regions by mining class-specific hard samples. This region selection procedure is further integrated into a CNN-based weakly supervised detection (WSD) framework, and can be performed in each stochastic gradient descent mini-batch during training. Therefore, the entire model can be trained end-to-end efficiently. Extensive evaluation results on PASCAL VOC 2007, VOC 2010 and VOC 2012 datasets are presented which demonstrate that the proposed method effectively improves WSD.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا