ﻻ يوجد ملخص باللغة العربية
We present results of a search for unidentified line emission and absorption signals in the 2-12keV energy band of spectra extracted from Perseus Cluster core region observations obtained with the 5eV energy resolution Hitomi Soft X-ray Spectrometer. No significant unidentified line emission or absorption is found. Line flux upper limits (1 sigma per resolution element) vary with photon energy and assumed intrinsic width, decreasing from 100 photons cm$^{-2}$ s$^{-1}$ sr $^{-1}$ at 2keV to $<10$ cm$^{-2}$ s$^{-1}$ sr $^{-1}$ over most of the 5-10 keV energy range for a Gaussian line with Doppler broadening of 640 km/s. Limits for narrower and broader lines have a similar energy dependence and are systematically smaller and larger, respectively. These line flux limits are used to constrain the decay rate of hypothetical dark matter candidates. For the sterile neutrino decay rate, new constraints over the the mass range of 4-24 keV with mass resolution better than any previous X-ray analysis are obtained. Additionally, the accuracy of relevant thermal spectral models and atomic data are evaluated. The Perseus cluster spectra may be described by a composite of multi-temperature thermal and AGN power-law continua. Superposed on these, a few line emission signals possibly originating from unmodeled atomic processes (including Si XIV and Fe XXV) are marginally detected and tabulated. Comparisons with previous X-ray upper limits and future prospects for dark matter searches using high-energy resolution spectroscopy are discussed.
High-resolution X-ray spectroscopy with Hitomi was expected to resolve the origin of the faint unidentified E=3.5 keV emission line reported in several low-resolution studies of various massive systems, such as galaxies and clusters, including the Pe
Extending the earlier measurements reported in Hitomi collaboration (2016, Nature, 535, 117), we examine the atmospheric gas motions within the central 100~kpc of the Perseus cluster using observations obtained with the Hitomi satellite. After correc
The present paper investigates the temperature structure of the X-ray emitting plasma in the core of the Perseus cluster using the 1.8--20.0 keV data obtained with the Soft X-ray Spectrometer (SXS) onboard the Hitomi Observatory. A series of four obs
The Hitomi SXS spectrum of the Perseus cluster, with $sim$5 eV resolution in the 2-9 keV band, offers an unprecedented benchmark of the atomic modeling and database for hot collisional plasmas. It reveals both successes and challenges of the current atomic codes. The late
Gamma-ray line signatures can be expected in the very-high-energy (VHE; E_gamma > 100 GeV) domain due to self-annihilation or decay of dark matter (DM) particles in space. Such a signal would be readily distinguishable from astrophysical gamma-ray so