ترغب بنشر مسار تعليمي؟ اضغط هنا

Correlation between SFR surface density and thermal pressure of ionized gas in local analogs of high-redshift galaxies

79   0   0.0 ( 0 )
 نشر من قبل Tianxing Jiang
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Tianxing Jiang




اسأل ChatGPT حول البحث

We explore the relation between the star formation rate surface density ($Sigma$SFR) and the interstellar gas pressure for nearby compact starburst galaxies. The sample consists of 17 green peas and 19 Lyman break analogs. Green peas are nearby analogs of Ly$alpha$ emitters at high redshift and Lyman break analogs are nearby analogs of Lyman break galaxies at high redshift. We measure the sizes for green peas using Hubble Space Telescope Cosmic Origins Spectrograph (COS) NUV images with a spatial resolution of $sim$ 0.05$^{}$. We estimate the gas thermal pressure in HII regions by $P = N_{total}Tk{_B} simeq 2n_{e}Tk{_B}$. The electron density is derived using the [SII] doublet at 6716,6731 AA, and the temperature is calculated from the [OIII] lines. The correlation is characterized by $Sigma$ SFR = 2.40$times$10$^{-3,}$M$_{odot,}$yr$^{-1,}$kpc$^{-2}$$left(frac{P/k_{B}}{10^{4}cm^{-3}K}right)^{1.33}$. Green peas and Lyman break analogs have high $Sigma$SFR up to 1.2 M$_{odot,}$yr$^{-1,}$kpc$^{-2}$ and high thermal pressure in HII region up to P/k$_B$ $sim$10$^{7.2}{rm, K, cm}^{-3}$. These values are at the highest end of the range seen in nearby starburst galaxies. The high gas pressure and the correlation, are in agreement with those found in star-forming galaxies at z $sim$ 2.5. These extreme pressures are shown to be responsible for driving galactic winds in nearby starbursts. These outflows may be a crucial in enabling Lyman-$alpha$ and Lyman-continuum to escape.



قيم البحث

اقرأ أيضاً

We show that the mass-metallicity relation observed in the local universe is due to a more general relation between stellar mass M*, gas-phase metallicity and SFR. Local galaxies define a tight surface in this 3D space, the Fundamental Metallicity Re lation (FMR), with a small residual dispersion of ~0.05 dex in metallicity, i.e, ~12%. At low stellar mass, metallicity decreases sharply with increasing SFR, while at high stellar mass, metallicity does not depend on SFR. High redshift galaxies, up to z~2.5 are found to follow the same FMR defined by local SDSS galaxies, with no indication of evolution. The evolution of the mass-metallicity relation observed up to z=2.5 is due to the fact that galaxies with progressively higher SFRs, and therefore lower metallicities, are selected at increasing redshifts, sampling different parts of the same FMR. By introducing the new quantity mu_alpha=log(M*)-alpha log(SFR), with alpha=0.32, we define a projection of the FMR that minimizes the metallicity scatter of local galaxies. The same quantity also cancels out any redshift evolution up to z~2.5, i.e, all galaxies have the same range of values of mu_0.32. At z>2.5, evolution of about 0.6 dex off the FMR is observed, with high-redshift galaxies showing lower metallicities. The existence of the FMR can be explained by the interplay of infall of pristine gas and outflow of enriched material. The former effect is responsible for the dependence of metallicity with SFR and is the dominant effect at high-redshift, while the latter introduces the dependence on stellar mass and dominates at low redshift. The combination of these two effects, together with the Schmidt-Kennicutt law, explains the shape of the FMR and the role of mu_0.32. The small metallicity scatter around the FMR supports the smooth infall scenario of gas accretion in the local universe.
We derive new self-consistent theoretical UV, optical, and IR diagnostics for the ISM pressure and electron density in the ionized nebulae of star-forming galaxies. Our UV diagnostics utilize the inter-combination, forbidden and resonance lines of si licon, carbon, aluminum, neon, and nitrogen. We also calibrate the optical and IR forbidden lines of oxygen, argon, nitrogen and sulfur. We show that line ratios used as ISM pressure diagnostics depend on the gas-phase metallicity with a residual dependence on the ionization parameter of the gas. In addition, the traditional electron density diagnostic [S II] {lambda}6731/[S II] {lambda}6717 is strongly dependent on the gas-phase metallicity. We show how different emission-line ratios are produced in different ionization zones in our theoretical nebulae. The [S II] and [O II] ratios are produced in different zones, and should not be used interchangeably to measure the electron density of the gas unless the electron temperature is known to be constant. We review the temperature and density distributions observed within H II regions and discuss the implications of these distributions on measuring the electron density of the gas. Many H II regions contain radial variations in density. We suggest that the ISM pressure is a more meaningful quantity to measure in H II regions or galaxies. Specific combinations of line ratios can cover the full range of ISM pressures (4 < log(P/k) < 9). As H II regions become resolved at increasingly high redshift through the next generation telescopes, we anticipate that these diagnostics will be important for understanding the conditions around the young, hot stars from the early universe to the present day.
We study the Carbon Monoxide (CO) excitation, mean molecular gas density and interstellar radiation field (ISRF) intensity in a comprehensive sample of 76 galaxies from local to high redshift (z~0-6), selected based on detections of their CO transiti ons J=2-1 and 5-4 and their optical/infrared/(sub-)millimeter spectral energy distributions (SEDs). We confirm the existence of a tight correlation between CO excitation as traced by the CO(5-4)/(2-1) line ratio (R52), and the mean ISRF intensity U as derived from infrared SED fitting using dust SED templates. By modeling the molecular gas density probability distribution function (PDF) in galaxies and predicting CO line ratios with large velocity gradient radiative transfer calculations, we present a framework linking global CO line ratios to the mean molecular hydrogen gas density nH2 and kinetic temperature Tkin. Mapping in this way observed R52 ratios to nH2 and Tkin probability distributions, we obtain positive U-nH2 and U-Tkin correlations, which imply a scenario in which the ISRF in galaxies is mainly regulated by Tkin and (non-linearly) by nH2. A small fraction of starburst galaxies showing enhanced nH2 could be due to merger-driven compaction. Our work demonstrates that ISRF and CO excitation are tightly coupled, and that density-PDF modeling is a promising tool for probing detailed ISM properties inside galaxies.
Star-forming dwarf galaxies have properties similar to those expected in high-redshift galaxies. Hence, these local galaxies may provide insights into the evolution of the first galaxies, and the physical processes at work. We present a sample of ele ven potential local analogs to high-$z$ (LAHz) galaxies. The sample consists of blue compact dwarf galaxies, selected to have spectral energy distributions that fit galaxies at $1.5<z<4$. We use SOFIA-HAWC+ observations combined with optical and near-infrared data to characterize the dust properties, star formation rate (SFR) and star formation histories (SFH) of the sample of LAHz. We employ Bayesian analysis to characterize the dust using two-component black-body models. Using the LIGHTNING package we fit the spectral energy distribution of the LAHz galaxies over the FUV-FIR wavelength range, and derive the SFH in five time-steps up to a look-back time of 13.3 Gyr. Of the eleven LAHz candidates, six galaxies have SFH consistent with no star formation activity at look-back times beyond 1 Gyr. The remaining galaxies show residual levels of star formation at ages $gtrsim$1,Gyr, making them less suitable as local analogs. The six young galaxies stand out in our sample by having the lowest gas-phase metallicities. They are characterized by warmer dust, having the highest specific SFR, and the highest gas mass fractions. The young age of these six galaxies suggests that merging is less important as a driver of the star formation activity. The six LAHz candidates are promising candidates for studies of the gas dynamics role in driving star formation.
Using a representative sample of 14 star-forming dwarf galaxies in the local Universe, we show the existence of a spaxel-to-spaxel anti-correlation between the index N2 (log([NII]6583/Halpha)) and the Halpha flux. These two quantities are commonly em ployed as proxies for gas-phase metallicity and star formation rate (SFR), respectively. Thus, the observed N2 to Halpha relation may reflect the existence of an anti-correlation between the metallicity of the gas forming stars and the SFR it induces. Such an anti-correlation is to be expected if variable external metal-poor gas fuels the star-formation process. Alternatively, it can result from the contamination of the star-forming gas by stellar winds and SNe, provided that intense outflows drive most of the metals out of the star-forming regions. We also explore the possibility that the observed anti-correlation is due to variations in the physical conditions of the emitting gas, other than metallicity. Using alternative methods to compute metallicity, as well as previous observations of HII regions and photoionization models, we conclude that this possibility is unlikely. The radial gradient of metallicity characterizing disk galaxies does not produce the correlation either.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا