ﻻ يوجد ملخص باللغة العربية
The composition of natural liquidity has been changing over time. An analysis of intraday volumes for the S&P500 constituent stocks illustrates that (i) volume surprises, i.e., deviations from their respective forecasts, are correlated across stocks, and (ii) this correlation increases during the last few hours of the trading session. These observations could be attributed, in part, to the prevalence of portfolio trading activity that is implicit in the growth of ETF, passive and systematic investment strategies; and, to the increased trading intensity of such strategies towards the end of the trading session, e.g., due to execution of mutual fund inflows/outflows that are benchmarked to the closing price on each day. In this paper, we investigate the consequences of such portfolio liquidity on price impact and portfolio execution. We derive a linear cross-asset market impact from a stylized model that explicitly captures the fact that a certain fraction of natural liquidity providers only trade portfolios of stocks whenever they choose to execute. We find that due to cross-impact and its intraday variation, it is optimal for a risk-neutral, cost minimizing liquidator to execute a portfolio of orders in a coupled manner, as opposed to a separable VWAP-like execution that is often assumed. The optimal schedule couples the execution of the various orders so as to be able to take advantage of increased portfolio liquidity towards the end of the day. A worst case analysis shows that the potential cost reduction from this optimized execution schedule over the separable approach can be as high as 6% for plausible model parameters. Finally, we discuss how to estimate cross-sectional price impact if one had a dataset of realized portfolio transaction records that exploits the low-rank structure of its coefficient matrix suggested by our analysis.
The success of a cross-sectional systematic strategy depends critically on accurately ranking assets prior to portfolio construction. Contemporary techniques perform this ranking step either with simple heuristics or by sorting outputs from standard
In light of micro-scale inefficiencies induced by the high degree of fragmentation of the Bitcoin trading landscape, we utilize a granular data set comprised of orderbook and trades data from the most liquid Bitcoin markets, in order to understand th
We consider a model in which a trader aims to maximize expected risk-adjusted profit while trading a single security. In our model, each price change is a linear combination of observed factors, impact resulting from the traders current and prior act
We revisit the epsilon-intelligence model of Toth et al.(2011), that was proposed as a minimal framework to understand the square-root dependence of the impact of meta-orders on volume in financial markets. The basic idea is that most of the daily li
We propose a dynamical theory of market liquidity that predicts that the average supply/demand profile is V-shaped and {it vanishes} around the current price. This result is generic, and only relies on mild assumptions about the order flow and on the