ﻻ يوجد ملخص باللغة العربية
General Two Higgs Doublet Models (2HDM) are popular Standard Model extensions but feature flavor changing interactions and lack neutrino masses. We discuss a 2HDM where neutrino masses are generated via type I seesaw and propose an extension where neutrino masses are generated via a type II seesaw mechanism with flavor changing interactions being absent via the presence of a U(1) gauge symmetry. After considering a variety of bounds such as those rising from collider and electroweak precision we show that our proposal stands as a UV complete 2HDM with a dark photon where neutrino masses and flavor changing interactions are addressed. A possible dark matter realization is also discussed.
We propose a neutrinophilic two Higgs doublet model with hidden local $U(1)$ symmetry, where active neutrinos are Dirac type, and a fermionic DM candidate is naturally induced as a result of remnant symmetry even after the spontaneous symmetry breaki
We propose a gauged two-Higgs-doublet model (2HDM) featuring an anomalous Peccei-Quinn symmetry, $U(1)_{PQ}$. Dangerous tree-level flavour-changing neutral currents, common in 2HDMs, are forbidden by the extra gauge symmetry, $U(1)_X$. In our constru
We study a three-loop induced neutrino model with a global $U(1)$ symmetry at TeV scale, in which we naturally accommodate a bosonic dark matter candidate. We discuss the allowed regions of masses and quartic couplings for charged scalar bosons as we
We revisit our previous model proposed in Ref. cite{Okada:2013iba}, in which lepton masses except the tauon mass are generated at the one-loop level in a TeV scale physics. Although in the previous work, rather large Yukawa couplings constants; i.e.,
Instead of right-handed neutrino singlets, the standard model is extended to include lepton triplets $(Sigma^+, Sigma^0, Sigma^-)$. Each quark and lepton family may now transform under an anomaly-free $U(1)_X$ gauge symmetry, known already for many y