ﻻ يوجد ملخص باللغة العربية
We extend the notion of Hitchin component from surface groups to orbifold groups and prove that this gives new examples of higher Teichm{u}ller spaces. We show that the Hitchin component of an orbifold group is homeomorphic to an open ball and we compute its dimension explicitly. We then give applications to the study of the pressure metric, cyclic Higgs bundles, and the deformation theory of real projective structures on $3$-manifolds.
In this paper we describe the space of maximal components of the character variety of surface group representations into PSp(4,R) and Sp(4,R). For every rank 2 real Lie group of Hermitian type, we construct a mapping class group invariant complex str
Let M be a two cusped hyperbolic 3-manifold and let M(r) be the result of r Dehn filling of a fixed cusp of M. We study canonical components of the SL(2,C) character varieties of M(r). We show that the gonality of these sets is bounded, independent o
This paper is devoted to the classification of connected components of Prym eigenform loci in the strata H(2,2)^odd and H(1,1,2) in the Abelian differentials bundle in genus 3. These loci, discovered by McMullen are GL^+(2,R)-invariant submanifolds (
A $k$-differential on a Riemann surface is a section of the $k$-th power of the canonical bundle. Loci of $k$-differentials with prescribed number and multiplicities of zeros and poles form a natural stratification for the moduli space of $k$-differe
We give a definition of atlases for ineffective orbifolds, and prove that this definition leads to the same notion of orbifold as that defined via topological groupoids.