ترغب بنشر مسار تعليمي؟ اضغط هنا

The magnetic propeller accretion regime of LkCa 15

463   0   0.0 ( 0 )
 نشر من قبل Jean-Francois Donati
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a spectropolarimetric study of the classical T Tauri star (cTTS) LkCa 15 investigating the large-scale magnetic topology of the central star and the way the field connects to the inner regions of the accretion disc. We find that the star hosts a strong poloidal field with a mainly axisymmetric dipole component of 1.35 kG, whereas the mass accretion rate at the surface of the star is $10^{-9.2}$ $hbox{${rm M}_{odot}$ yr$^{-1}$}$. It implies that the magnetic field of LkCa 15 is able to evacuate the central regions of the disc up to a distance of 0.07 au at which the Keplerian orbital period equals the stellar rotation period. Our results suggest that LkCa 15, like the lower-mass cTTS AA Tau, interacts with its disc in a propeller mode, a regime supposedly very efficient at slowing down the rotation of cTTSs hosting strong dipolar fields.



قيم البحث

اقرأ أيضاً

Planet formation is one explanation for the partial clearing of dust observed in the disks of some T Tauri stars. Indeed studies using state-of-the-art high angular resolution techniques have very recently begun to observe planetary companions in the se so-called transitional disks. The goal of this work is to use spectra of the transitional disk object LkCa 15 obtained with X-Shooter on the Very Large Telescope to investigate the possibility of using spectro-astrometry to detect planetary companions to T Tauri stars. It is argued that an accreting planet should contribute to the total emission of accretion tracers such as H$alpha$ and therefore planetary companions could be detected with spectro-astrometry in the same way as it has been used to detect stellar companions to young stars. A probable planetary-mass companion was recently detected in the disk of LkCa 15. Therefore, it is an ideal target for this pilot study. We studied several key accretion lines in the wavelength range 300 nm to 2.2 $mu$m with spectro-astrometry. While no spectro-astrometric signal is measured for any emission lines the accuracy achieved in the technique is used to place an upper limit on the contribution of the planet to the flux of the H$alpha$, Pa$gamma$, and Pa$beta$ lines. The derived upper limits on the flux allows an upper limit of the mass accretion rate, log($dot{M}_{acc}$) = -8.9 to -9.3 for the mass of the companion between 6 M$_{Jup}$ and 15 M$_{Jup}$, respectively, to be estimated (with some assumptions).
LkCa 15 hosts a pre-transitional disk as well as at least one accreting protoplanet orbiting in its gap. Previous disk observations have focused mainly on the outer disk, which is cleared inward of ~50 au. The planet candidates, on the other hand, re side at orbital radii around 15 au, where disk observations have been unreliable until recently. Here we present new J-band imaging polarimetry of LkCa 15 with SPHERE IRDIS, yielding the most accurate and detailed scattered-light images of the disk to date down to the planet-hosting inner regions. We find what appear to be persistent asymmetric structures in the scattering material at the location of the planet candidates, which could be responsible at least for parts of the signals measured with sparse-aperture masking. These images further allow us to trace the gap edge in scattered light at all position angles and search the inner and outer disks for morphological substructure. The outer disk appears smooth with slight azimuthal variations in polarized surface brightness, which may be due to shadowing from the inner disk or a two-peaked polarized phase function. We find that the near-side gap edge revealed by polarimetry matches the sharp crescent seen in previous ADI imaging very well. Finally, the ratio of polarized disk to stellar flux is more than six times larger in J-band than in the RI bands.
Magnetospheric accretion has been thoroughly studied in young stellar systems with full non-evolved accretion disks, but it is poorly documented for transition disk objects with large inner cavities. We aim at characterizing the star-disk interaction and the accretion process onto the central star of LkCa 15, a transition disk system with an inner dust cavity. We obtained quasi-simultaneous photometric and spectropolarimetric observations of the system over several rotational periods. We analyzed the system light curve, as well as changes in spectral continuum and line profile to derive the properties of the accretion flow from the edge of the inner disk to the central star. We also derived magnetic field measurements at the stellar surface. We find that the system exhibits magnetic, photometric, and spectroscopic variability with a period of about 5.70 days. The light curve reveals a periodic dip, which suggests the presence of an inner disk warp that is located at the corotation radius at about 0.06 au from the star. Line profile variations and veiling variability are consistent with a magnetospheric accretion model where the funnel flows reach the star at high latitudes. This leads to the development of an accretion shock close to the magnetic poles. All diagnostics point to a highly inclined inner disk that interacts with the stellar magnetosphere. The spectroscopic and photometric variability of LkCa 15 is remarkably similar to that of AA Tau, the prototype of periodic dippers. We therefore suggest that the origin of the variability is a rotating disk warp that is located at the inner edge of a highly inclined disk close to the star. This contrasts with the moderate inclination of the outer transition disk seen on the large scale and thus provides evidence for a significant misalignment between the inner and outer disks of this planet-forming transition disk system.
With the legacy of Spitzer and current advances in (sub)mm astronomy, a large number of transitional disks has been identified which are believed to contain gaps or have developped large inner holes, some filled with dust. This may indicate that comp lex geometries may be a key feature in disk evolution that has to be understood and modeled correctly. The disk around LkCa 15 is such a disk, with a gap ranging from ~5 - 50 AU, as identified by Espaillat et al. (2007) using 1+1D radiative transfer modelling. To fit the SED, they propose 2 possible scenarios for the inner (<5 AU) disk - optically thick or optically thin - and one scenario for the outer disk. We use the gapped disk of LkCa 15 as a showcase to illustrate the importance of 2D radiative transfer in transitional disks, by showing how the vertical dust distribution in dust-filled inner holes determines not only the radial optical depth but also the outer disk geometry. We use MCMax, a 2D radiative transfer code with a self-consistent vertical structure, to model the SED. We identify two possible geometries for the inner and outer disk, that are both different from those in Espaillat et al. (2007). An inner disk in hydrostatic equilibrium reprocesses enough starlight to fit the near infrared flux, but also casts a shadow on the inner rim of the outer disk. This requires the outer disk scale height to be large enough to rise out of the shadow. An optically thin inner disk does not cast such a shadow, and the SED can be fitted with a smaller outer disk scale height. For the dust in the inner regions to become optically thin however, the scale height would have to be so much larger than its hydrostatic equilibrium value that it effectively becomes a dust shell. It is currently unclear if a physical mechanism exists which could provide for such a configuration.
This paper exploits spectropolarimetric data of the classical T Tauri star CI Tau collected with ESPaDOnS at the Canada-France-Hawaii Telescope, with the aims of detecting and characterizing the large-scale magnetic field that the star hosts, and of investigating how the star interacts with the inner regions of its accretion disc through this field. Our data unambiguously show that CI Tau has a rotation period of 9.0d, and that it hosts a strong, mainly poloidal large-scale field. Accretion at the surface of the star concentrates within a bright high-latitude chromospheric region that spatially overlaps with a large dark photospheric spot, in which the radial magnetic field reaches -3.7kG. With a polar strength of -1.7kG, the dipole component of the large-scale field is able to evacuate the central regions of the disc up to about 50% of the co-rotation radius (at which the Keplerian orbital period equals the stellar rotation period) throughout our observations, during which the average accretion rate was found to be unusually high. We speculate that the magnetic field of CI Tau is strong enough to sustain most of the time a magnetospheric gap extending to at least 70% of the co-rotation radius, which would explain why the rotation period of CI Tau is as long as 9d. Our results also imply that the 9d radial velocity (RV) modulation that CI Tau exhibits is attributable to stellar activity, and thus that the existence of the candidate close-in massive planet CI Tau b to which these RV fluctuations were first attributed needs to be reassessed with new evidence.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا