ﻻ يوجد ملخص باللغة العربية
We study social choice mechanisms in an implicit utilitarian framework with a metric constraint, where the goal is to minimize textit{Distortion}, the worst case social cost of an ordinal mechanism relative to underlying cardinal utilities. We consider two additional desiderata: Constant sample complexity and Squared Distortion. Constant sample complexity means that the mechanism (potentially randomized) only uses a constant number of ordinal queries regardless of the number of voters and alternatives. Squared Distortion is a measure of variance of the Distortion of a randomized mechanism. Our primary contribution is the first social choice mechanism with constant sample complexity textit{and} constant Squared Distortion (which also implies constant Distortion). We call the mechanism Random Referee, because it uses a random agent to compare two alternatives that are the favorites of two other random agents. We prove that the use of a comparison query is necessary: no mechanism that only elicits the top-k preferred alternatives of voters (for constant k) can have Squared Distortion that is sublinear in the number of alternatives. We also prove that unlike any top-k only mechanism, the Distortion of Random Referee meaningfully improves on benign metric spaces, using the Euclidean plane as a canonical example. Finally, among top-1 only mechanisms, we introduce Random Oligarchy. The mechanism asks just 3 queries and is essentially optimal among the class of such mechanisms with respect to Distortion. In summary, we demonstrate the surprising power of constant sample complexity mechanisms generally, and just three random voters in particular, to provide some of the best known results in the implicit utilitarian framework.
Wagering mechanisms are one-shot betting mechanisms that elicit agents predictions of an event. For deterministic wagering mechanisms, an existing impossibility result has shown incompatibility of some desirable theoretical properties. In particular,
In large scale collective decision making, social choice is a normative study of how one ought to design a protocol for reaching consensus. However, in instances where the underlying decision space is too large or complex for ordinal voting, standard
We discuss the connection between computational social choice (comsoc) and computational complexity. We stress the work so far on, and urge continued focus on, two less-recognized aspects of this connection. Firstly, this is very much a two-way stree
Without monetary payments, the Gibbard-Satterthwaite theorem proves that under mild requirements all truthful social choice mechanisms must be dictatorships. When payments are allowed, the Vickrey-Clarke-Groves (VCG) mechanism implements the value-ma
We build on the stability-preserving school choice model introduced and studied recently in [MV18]. We settle several of their open problems and we define and solve a couple of new ones.