ﻻ يوجد ملخص باللغة العربية
Steganography, as one of the three basic information security systems, has long played an important role in safeguarding the privacy and confidentiality of data in cyberspace. The text is the most widely used information carrier in peoples daily life, using text as a carrier for information hiding has broad research prospects. However, due to the high coding degree and less information redundancy in the text, it has been an extremely challenging problem to hide information in it for a long time. In this paper, we propose a steganography method which can automatically generate steganographic text based on the Markov chain model and Huffman coding. It can automatically generate fluent text carrier in terms of secret information which need to be embedded. The proposed model can learn from a large number of samples written by people and obtain a good estimate of the statistical language model. We evaluated the proposed model from several perspectives. Experimental results show that the performance of the proposed model is superior to all the previous related methods in terms of information imperceptibility and information hidden capacity.
Efficient optimal prefix coding has long been accomplished via the Huffman algorithm. However, there is still room for improvement and exploration regarding variants of the Huffman problem. Length-limited Huffman coding, useful for many practical app
Motivated by concerns for user privacy, we design a steganographic system (stegosystem) that enables two users to exchange encrypted messages without an adversary detecting that such an exchange is taking place. We propose a new linguistic stegosyste
Todays high-performance computing (HPC) applications are producing vast volumes of data, which are challenging to store and transfer efficiently during the execution, such that data compression is becoming a critical technique to mitigate the storage
We propose steganographic systems for the case when covertexts (containers) are generated by a finite-memory source with possibly unknown statistics. The probability distributions of covertexts with and without hidden information are the same; this m
Recently, a medical privacy protection scheme (MPPS) based on DNA coding and chaos was proposed in [IEEETrans. Nanobioscience, vol. 16, pp. 850--858, 2017], which uses two coupled chaotic system to generate cryptographic primitives to encrypt color D