ﻻ يوجد ملخص باللغة العربية
In this paper we show that the phase shift of the spin waves can be controlled in transmission through metasurface represented as an ultra-narrow non-magnetic spacer separating two ferromagnetic films. We design this metasurface to present the focusing of spin waves in an Co thin film. For this purpose we exploit the strength of the interlayer exchange coupling interactions of RKKY type which allows to control the phase of the transmitted and reflected spin waves in the wide range of angles [$-pi/2$;$pi/2$]. We combined this phase-shift dependency with the lens equation to demonstrate numerically the lens for spin waves based on ultra-narrow metasurface.
We theoretically and experimentally propose two designs of broadband low-frequency acoustic metasurface absorbers (Sample I/Sample II) for the frequency ranges of 458Hz~968Hz and 231Hz~491Hz (larger than 1 octave), with absorption larger than 0.8, an
Although a rigorous theoretical ground on metasurfaces has been established in the recent years on the basis of the equivalence principle, the majority of metasurfaces for converting a propagating wave into a surface wave are developed in accordance
This paper describes a new kind of acoustic metasurface with multiply resonant units, which have previously been used to induce multiple resonances and effectively produce negative mass density and bulk/shear moduli. The proposed acoustic metasurface
We show that narrow superconducting strips in superconducting (S) and normal (N) states are universally described by the model presenting them as lateral NSN proximity systems in which the superconducting central band is sandwiched between damaged ed
We design a two-dimensional ultra-thin elastic metasurface consisting of steel cores coated with elliptical rubbers embedded in epoxy matrix, capable of manipulating bulk elastic wave modes for reflected waves. The energy exchanges between the longit