ﻻ يوجد ملخص باللغة العربية
Doping is one of the most common strategies for improving the photocatalytic and solar energy conversion properties of TiO$_2$, hence an accurate theoretical description of the electronic and optical properties of doped TiO$_2$ is of both scientific and practical interest. In this work we use many-body perturbation theory techniques to investigate two typical n-type dopants, Niobium and Hydrogen, in TiO$_2$ rutile. Using the GW approximation to determine band edges and defect energy levels, and the Bethe Salpeter equation for the calculation of the absorption spectra, we find that the defect energy levels form non-dispersive bands %associated with localized states lying $simeq 2.2 eV$ above the top of the corresponding valence bands ($simeq 0.9 eV$ below the conduction bands of the {it pristine} material). The defect states are also responsible for the appearance of low energy absorption peaks that enhance the solar spectrum absorption of rutile. The spatial distributions of the excitonic wavefunctions associated with these low energy excitations are very different for the two dopants, suggesting a larger mobility of photoexcited electrons in Nb-TiO$_2$.
Cyclometalled Ir(III) compounds are the preferred choice as organic emitters in Organic Light Emitting Diodes. In practice, the presence of the transition metals surrounded by carefully designed ligands allows the fine tuning of the emission frequenc
The bandstructure of gold is calculated using many-body perturbation theory (MBPT). Different approximations within the GW approach are considered. Standard single shot G0W0 corrections shift the unoccupied bands up by ~0.2 eV and the first sp-like o
The formation energies and electronic structure of europium doped zinc oxide has been determined using DFT and many-body $GW$ methods. In the absence of intrisic defects we find that the europium-$f$ states are located in the ZnO band gap with europi
We present many-body textit{ab initio} calculations of the electronic and optical properties of semiconducting zigzag carbon nanotubes under uniaxial strain. The GW approach is utilized to obtain the quasiparticle bandgaps and is combined with the Be
The conductance of single molecule junctions is calculated using a Landauer approach combined to many-body perturbation theory MBPT) to account for electron correlation. The mere correction of the density-functional theory eigenvalues, which is the s