ﻻ يوجد ملخص باللغة العربية
Humans are capable of processing speech by making use of multiple sensory modalities. For example, the environment where a conversation takes place generally provides semantic and/or acoustic context that helps us to resolve ambiguities or to recall named entities. Motivated by this, there have been many works studying the integration of visual information into the speech recognition pipeline. Specifically, in our previous work, we propose a multistep visual adaptive training approach which improves the accuracy of an audio-based Automatic Speech Recognition (ASR) system. This approach, however, is not end-to-end as it requires fine-tuning the whole model with an adaptation layer. In this paper, we propose novel end-to-end multimodal ASR systems and compare them to the adaptive approach by using a range of visual representations obtained from state-of-the-art convolutional neural networks. We show that adaptive training is effective for S2S models leading to an absolute improvement of 1.4% in word error rate. As for the end-to-end systems, although they perform better than baseline, the improvements are slightly less than adaptive training, 0.8 absolute WER reduction in single-best models. Using ensemble decoding, end-to-end models reach a WER of 15% which is the lowest score among all systems.
Multimodal automatic speech recognition systems integrate information from images to improve speech recognition quality, by grounding the speech in the visual context. While visual signals have been shown to be useful for recovering entities that hav
We propose a fully convolutional sequence-to-sequence encoder architecture with a simple and efficient decoder. Our model improves WER on LibriSpeech while being an order of magnitude more efficient than a strong RNN baseline. Key to our approach is
Sequence-to-sequence (seq2seq) approach for low-resource ASR is a relatively new direction in speech research. The approach benefits by performing model training without using lexicon and alignments. However, this poses a new problem of requiring mor
In this paper, we investigate the benefit that off-the-shelf word embedding can bring to the sequence-to-sequence (seq-to-seq) automatic speech recognition (ASR). We first introduced the word embedding regularization by maximizing the cosine similari
Encoder-decoder models provide a generic architecture for sequence-to-sequence tasks such as speech recognition and translation. While offline systems are often evaluated on quality metrics like word error rates (WER) and BLEU, latency is also a cruc