ﻻ يوجد ملخص باللغة العربية
We investigate the half-filled two-orbital Hubbard model with the crystalline electric field using dynamical mean-field theory combined with the continuous-time quantum Monte Carlo simulations. We systematically study how the interplay of the intra- and interorbital Coulomb interations together with the Hund coupling realizes the diagonal and off-diagonal ordered states. It is found that the antiferroorbital ordered state is realized in the Hubbard model, in addition to the antiferromagnetically ordered and excitonic states. The competition between the antiferroorbital ordered and excitonic states close to the band insulating state is addressed.
Two very different methods -- exact diagonalization on finite chains and a variational method -- are used to study the possibility of a metal-insulator transition in the symmetric half-filled periodic Anderson-Hubbard model. With this aim we calculat
Using a self-consistent Hartree-Fock approximation we investigate the relative stability of various stripe phases in the extended $t$-$t$-$U$ Hubbard model. One finds that a negative ratio of next- to nearest-neighbor hopping $t/t<0$ expells holes fr
We study the phase diagram of the ionic Hubbard model (IHM) at half-filling using dynamical mean field theory (DMFT), with two impurity solvers, namely, iterated perturbation theory (IPT) and continuous time quantum Monte Carlo (CTQMC). The physics o
By means of the dynamical vertex approximation (D$Gamma$A) we include spatial correlations on all length scales beyond the dynamical mean field theory (DMFT) for the half-filled Hubbard model in three dimensions. The most relevant changes due to non-
In strongly correlated multi-orbital systems, various ordered phases appear. In particular, the orbital order in iron-based superconductors attracts much attention since it is considered to be the origin of the nematic state. In order to clarify the