ﻻ يوجد ملخص باللغة العربية
We present a fully automated system for sizing nasal Positive Airway Pressure (PAP) masks. The system is comprised of a mix of HOG object detectors as well as multiple convolutional neural network stages for facial landmark detection. The models were trained using samples from the publicly available PUT and MUCT datasets while transfer learning was also employed to improve the performance of the models on facial photographs of actual PAP mask users. The fully automated system demonstrated an overall accuracy of 64.71% in correctly selecting the appropriate mask size and 86.1% accuracy sizing within 1 mask size.
We present a semi-automated system for sizing nasal Positive Airway Pressure (PAP) masks based upon a neural network model that was trained with facial photographs of both PAP mask users and non-users. It demonstrated an accuracy of 72% in correctly
Glaucoma is one of the leading causes of irreversible but preventable blindness in working age populations. Color fundus photography (CFP) is the most cost-effective imaging modality to screen for retinal disorders. However, its application to glauco
Early and correct diagnosis is a very important aspect of cancer treatment. Detection of tumour in Computed Tomography scan is a tedious and tricky task which requires expert knowledge and a lot of human working hours. As small human error is present
Facts are important in decision making in every situation, which is why it is important to catch deceptive information before they are accepted as facts. Deception detection in videos has gained traction in recent times for its various real-life appl
The amounts of muscle and fat in a persons body, known as body composition, are correlated with cancer risks, cancer survival, and cardiovascular risk. The current gold standard for measuring body composition requires time-consuming manual segmentati