ﻻ يوجد ملخص باللغة العربية
We test the hypothesis that the sub-millimetre thermal emission and scattered light gaps seen in recent observations of TW Hya are caused by planet-disc interactions. We perform global three-dimensional dusty smoothed particle hydrodynamics simulations, comparing synthetic observations of our models with dust thermal emission, CO emission and scattered light observations. We find that the dust gaps observed at 24 au and 41 au can be explained by two super-Earths ($sim 4 mathrm{M}_{oplus}$). A planet of approximately Saturn-mass can explain the CO emission and the depth and width of the gap seen in scattered light at 94 au. Our model produces a prominent spiral arm while there are only hints of this in the data. To avoid runaway growth and migration of the planets we require a disc mass of $lesssim 10^{-2},mathrm{M}_{odot}$ in agreement with CO observations but 10$-$100 times lower than the estimate from HD line emission.
Dark rings with bright rims are the indirect signposts of planets embedded in protoplanetary discs. In a recent first, an azimuthally elongated AU-scale blob, possibly a planet, was resolved with ALMA in TW Hya. The blob is at the edge of a cliff-lik
We report the detection of spiral substructure in both the gas velocity and temperature structure of the disk around TW~Hya, suggestive of planet-disk interactions with an unseen planet. Perturbations from Keplerian rotation tracing out a spiral patt
We present Atacama Large Millimeter Array (ALMA) observations of TW Hya at 3.1 mm with $sim50$ milliarcsecond resolution. These new data were combined with archival high angular resolution ALMA observations at 0.87 mm, 1.3 mm, and 2.1 mm. We analyze
We present a near-infrared direct imaging search for accretion signatures of possible protoplanets around the young stellar object (YSO) TW Hya, a multi-ring disk exhibiting evidence of planet formation. The Pa$beta$ line (1.282 $mu$m) is an indicati
We report observations of the cyanide anion, CN, in the disk around TW~Hya covering the $N=1-0$, $N=2-1$ and $N=3-2$ transitions. Using line stacking techniques, 24 hyperfine transitions are detected out of the 30 within the observed frequency ranges