ترغب بنشر مسار تعليمي؟ اضغط هنا

Uncovering the Social Interaction in Swarm Intelligence with Network Science

67   0   0.0 ( 0 )
 نشر من قبل Marcos Oliveira
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Swarm intelligence is the collective behavior emerging in systems with locally interacting components. Because of their self-organization capabilities, swarm-based systems show essential properties for handling real-world problems such as robustness, scalability, and flexibility. Yet, we do not know why swarm-based algorithms work well and neither we can compare the different approaches in the literature. The lack of a common framework capable of characterizing these several swarm-based algorithms, transcending their particularities, has led to a stream of publications inspired by different aspects of nature without a systematic comparison over existing approaches. Here, we address this gap by introducing a network-based framework---the interaction network---to examine computational swarm-based systems via the optics of the social dynamics of such interaction network; a clear example of network science being applied to bring further clarity to a complicated field within artificial intelligence. We discuss the social interactions of four well-known swarm-based algorithms and provide an in-depth case study of the Particle Swarm Optimization. The interaction network enables researchers to study swarm algorithms as systems, removing the algorithm particularities from the analyses while focusing on the structure of the social interactions.



قيم البحث

اقرأ أيضاً

Algorithms implementing populations of agents which interact with one another and sense their environment may exhibit emergent behavior such as self-organization and swarm intelligence. Here a swarm system, called Databionic swarm (DBS), is introduce d which is able to adapt itself to structures of high-dimensional data characterized by distance and/or density-based structures in the data space. By exploiting the interrelations of swarm intelligence, self-organization and emergence, DBS serves as an alternative approach to the optimization of a global objective function in the task of clustering. The swarm omits the usage of a global objective function and is parameter-free because it searches for the Nash equilibrium during its annealing process. To our knowledge, DBS is the first swarm combining these approaches. Its clustering can outperform common clustering methods such as K-means, PAM, single linkage, spectral clustering, model-based clustering, and Ward, if no prior knowledge about the data is available. A central problem in clustering is the correct estimation of the number of clusters. This is addressed by a DBS visualization called topographic map which allows assessing the number of clusters. It is known that all clustering algorithms construct clusters, irrespective of the data set contains clusters or not. In contrast to most other clustering algorithms, the topographic map identifies, that clustering of the data is meaningless if the data contains no (natural) clusters. The performance of DBS is demonstrated on a set of benchmark data, which are constructed to pose difficult clustering problems and in two real-world applications.
This paper introduces AdaSwarm, a novel gradient-free optimizer which has similar or even better performance than the Adam optimizer adopted in neural networks. In order to support our proposed AdaSwarm, a novel Exponentially weighted Momentum Partic le Swarm Optimizer (EMPSO), is proposed. The ability of AdaSwarm to tackle optimization problems is attributed to its capability to perform good gradient approximations. We show that, the gradient of any function, differentiable or not, can be approximated by using the parameters of EMPSO. This is a novel technique to simulate GD which lies at the boundary between numerical methods and swarm intelligence. Mathematical proofs of the gradient approximation produced are also provided. AdaSwarm competes closely with several state-of-the-art (SOTA) optimizers. We also show that AdaSwarm is able to handle a variety of loss functions during backpropagation, including the maximum absolute error (MAE).
Through the success of deep learning in various domains, artificial neural networks are currently among the most used artificial intelligence methods. Taking inspiration from the network properties of biological neural networks (e.g. sparsity, scale- freeness), we argue that (contrary to general practice) artificial neural networks, too, should not have fully-connected layers. Here we propose sparse evolutionary training of artificial neural networks, an algorithm which evolves an initial sparse topology (ErdH{o}s-Renyi random graph) of two consecutive layers of neurons into a scale-free topology, during learning. Our method replaces artificial neural networks fully-connected layers with sparse ones before training, reducing quadratically the number of parameters, with no decrease in accuracy. We demonstrate our claims on restricted Boltzmann machines, multi-layer perceptrons, and convolutional neural networks for unsupervised and supervised learning on 15 datasets. Our approach has the potential to enable artificial neural networks to scale up beyond what is currently possible.
Evolution has produced a multi-scale mosaic of interacting adaptive units. Innovations arise when perturbations push parts of the system away from stable equilibria into new regimes where previously well-adapted solutions no longer work. Here we expl ore the hypothesis that multi-agent systems sometimes display intrinsic dynamics arising from competition and cooperation that provide a naturally emergent curriculum, which we term an autocurriculum. The solution of one social task often begets new social tasks, continually generating novel challenges, and thereby promoting innovation. Under certain conditions these challenges may become increasingly complex over time, demanding that agents accumulate ever more innovations.
143 - Bing Zeng , Xinyu Li , Liang Gao 2018
Most real-world optimization problems often come with multiple global optima or local optima. Therefore, increasing niching metaheuristic algorithms, which devote to finding multiple optima in a single run, are developed to solve these multimodal opt imization problems. However, there are two difficulties urgently to be solved for most existing niching metaheuristic algorithms: how to set the optimal values of niching parameters for different optimization problems, and how to jump out of the local optima efficiently. These two difficulties limited their practicality largely. Based on Whale Swarm Algorithm (WSA) we proposed previously, this paper presents a new multimodal optimizer named WSA with Iterative Counter (WSA-IC) to address these two difficulties. In the one hand, WSA-IC improves the iteration rule of the original WSA for multimodal optimization, which removes the need of specifying different values of attenuation coefficient for different problems to form multiple subpopulations, without introducing any niching parameter. In the other hand, WSA-IC enables the identification of extreme point during iterations relying on two new parameters (i.e., stability threshold Ts and fitness threshold Tf), to jump out of the located extreme point. Moreover, the convergence of WSA-IC is proved. Finally, the proposed WSA-IC is compared with several niching metaheuristic algorithms on CEC2015 niching benchmark test functions and five additional classical multimodal functions with high dimensions. The experimental results demonstrate that WSA-IC statistically outperforms other niching metaheuristic algorithms on most test functions.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا