ﻻ يوجد ملخص باللغة العربية
RacerD is a static race detector that has been proven to be effective in engineering practice: it has seen thousands of data races fixed by developers before reaching production, and has supported the migration of Facebooks Android app rendering infrastructure from a single-threaded to a multi-threaded architecture. We prove a True Positives Theorem stating that, under certain assumptions, an idealized theoretical version of the analysis never reports a false positive. We also provide an empirical evaluation of an implementation of this analysis, versus the original RacerD. The theorem was motivated in the first case by the desire to understand the observation from production that RacerD was providing remarkably accurate signal to developers, and then the theorem guided further analyzer design decisions. Technically, our result can be seen as saying that the analysis computes an under-approximation of an over-approximation, which is the reverse of the more usual (over of under) situation in static analysis. Until now, static analyzers that are effective in practice but unsound have often been regarded as ad hoc; in contrast, we suggest that, in the future, theorems of this variety might be generally useful in understanding, justifying and designing effective static analyses for bug catching.
Satisfiability modulo theories (SMT) solving has become a critical part of many static analyses, including symbolic execution, refinement type checking, and model checking. We propose Formulog, a domain-specific language that makes it possible to wri
In the era of Exascale computing, writing efficient parallel programs is indispensable and at the same time, writing sound parallel programs is very difficult. Specifying parallelism with frameworks such as OpenMP is relatively easy, but data races i
Gradually typed languages are designed to support both dynamically typed and statically typed programming styles while preserving the benefits of each. While existing gradual type soundness theorems for these languages aim to show that type-based rea
The development of programming languages can be quite complicated and costly. Hence, much effort has been devoted to the modular definition of language features that can be reused in various combinations to define new languages and experiment with th
Practical error analysis is essential for the design, optimization, and evaluation of Noisy Intermediate-Scale Quantum(NISQ) computing. However, bounding errors in quantum programs is a grand challenge, because the effects of quantum errors depend on