ﻻ يوجد ملخص باللغة العربية
Multifractal analysis has become a powerful signal processing tool that characterizes signals or images via the fluctuations of their pointwise regularity, quantified theoretically by the so-called multifractal spectrum. The practical estimation of the multifractal spectrum fundamentally relies on exploiting the scale dependence of statistical properties of appropriate multiscale quantities, such as wavelet leaders, that can be robustly computed from discrete data. Despite successes of multifractal analysis in various real-world applications, current estimation procedures remain essentially limited to providing concave upper-bound estimates, while there is a priori no reason for the multifractal spectrum to be a concave function. This work addresses this severe practical limitation and proposes a novel formalism for multifractal analysis that enables nonconcave multifractal spectra to be estimated in a stable way. The key contributions reside in the development and theoretical study of a generalized multifractal formalism to assess the multiscale statistics of wavelet leaders, and in devising a practical algorithm that permits this formalism to be applied to real-world data, allowing for the estimation of nonconcave multifractal spectra. Numerical experiments are conducted on several synthetic multifractal processes as well as on a real-world remote-sensing image and demonstrate the benefits of the proposed multifractal formalism over the state of the art.
We refine the multifractal formalism for the local dimension of a Gibbs measure $mu$ supported on the attractor $Lambda$ of a conformal iterated functions system on the real line. Namely, for given $alphain mathbb{R}$, we establish the formalism for
We present a comparison of two english texts, written by Lewis Carroll, one (Alice in wonderland) and the other (Through a looking glass), the former translated into esperanto, in order to observe whether natural and artificial languages significantl
The correlation properties of the magnitudes of a time series (sometimes called volatility) are associated with nonlinear and multifractal properties and have been applied in a great variety of fields. Here, we have obtained analytically the expressi
Many complex systems generate multifractal time series which are long-range cross-correlated. Numerous methods have been proposed to characterize the multifractal nature of these long-range cross correlations. However, several important issues about
We present the condensation method that exploits the heterogeneity of the probability distribution functions (PDF) of event locations to improve the spatial information content of seismic catalogs. The method reduces the size of seismic catalogs whil