ﻻ يوجد ملخص باللغة العربية
We show that certain amenable subgroups inside $tilde{A}_2$-groups are singular in the sense of Boutonnet and Carderi. This gives a new family of examples of singular group von Neumann subalgebras. We also give a geometric proof that if $G$ is an acylindrically hyperbolic group, $H$ is an infinite amenable subgroup containing a loxodromic element, then $H<G$ is singular. Finally, we present (counter)examples to show both situations happen concerning maximal amenability of $LH$ inside $LG$ if $H$ does not contain loxodromic elements.
We initiate a study of maximal subgroups and maximal von Neumann subalgebras which have the Haagerup property. We determine maximal Haagerup subgroups inside $mathbb{Z}^2 rtimes SL_2(mathbb{Z})$ and obtain several explicit instances where maximal Haa
Given a von Neumann algebra $M$ denote by $S(M)$ and $LS(M)$ respectively the algebras of all measurable and locally measurable operators affiliated with $M.$ For a faithful normal semi-finite trace $tau$ on $M$ let $S(M, tau)$ (resp. $S_0(M, tau)$)
Ge asked the question whether $LF_{infty}$ can be embedded into $LF_2$ as a maximal subfactor. We answer it affirmatively by three different approaches, all containing the same key ingredient: the existence of maximal subgroups with infinite index. W
Given a type I von Neumann algebra $M$ with a faithful normal semi-finite trace $tau,$ let $S_0(M, tau)$ be the algebra of all $tau$-compact operators affiliated with $M.$ We give a complete description of all derivations on the algebra $S_0(M, tau).
A unital ring is called clean (resp. strongly clean) if every element can be written as the sum of an invertible element and an idempotent (resp. an invertible element and an idempotent that commutes). T.Y. Lam proposed a question: which von Neumann