ترغب بنشر مسار تعليمي؟ اضغط هنا

An Extension of ETH to Non-Equilibrium Steady States

104   0   0.0 ( 0 )
 نشر من قبل Sanjay Moudgalya
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We extend the notion of the Eigenstate Thermalization Hypothesis (ETH) to Open Quantum Systems governed by the Gorini-Kossakowski-Lindblad-Sudarshan (GKLS) Master Equation. We present evidence that the eigenstates of non-equilibrium steady state (NESS) density matrices obey a generalization of ETH in boundary-driven systems when the bulk Hamiltonian is non-integrable, just as eigenstates of Gibbs density matrices are conjectured to do in equilibrium. This generalized ETH, which we call NESS-ETH, can be used to obtain representative pure states that reproduce the expectation values of few-body operators in the NESS. The density matrices of these representative pure states can be further interpreted as weak solutions of the GKLS Master Equation. Additionally, we explore the validity and breakdown of NESS-ETH in the presence of symmetries, integrability and many-body localization in the bulk Hamiltonian.



قيم البحث

اقرأ أيضاً

We examine how systems in non-equilibrium steady states close to a continuous phase transition can still be described by a Landau potential if one forgoes the assumption of analyticity. In a system simultaneously coupled to several baths at different temperatures, the non-analytic potential arises from the different density of states of the baths. In periodically driven-dissipative systems, the role of multiple baths is played by a single bath transferring energy at different harmonics of the driving frequency. The mean-field critical exponents become dependent on the low-energy features of the two most singular baths. We propose an extension beyond mean field.
Modern methods for sampling rugged landscapes in state space mainly rely on knowledge of the relative probabilities of microstates, which is given by the Boltzmann factor for equilibrium systems. In principle, trajectory reweighting provides an elega nt way to extend these algorithms to non-equilibrium systems, by numerically calculating the relative weights that can be directly substituted for the Boltzmann factor. We show that trajectory reweighting has many commonalities with Rosenbluth sampling for chain macromolecules, including practical problems which stem from the fact that both are iterated importance sampling schemes: for long trajectories the distribution of trajectory weights becomes very broad and trajectories carrying high weights are infrequently sampled, yet long trajectories are unavoidable in rugged landscapes. For probing the probability landscapes of genetic switches and similar systems, these issues preclude the straightforward use of trajectory reweighting. The analogy to Rosenbluth sampling suggests though that path ensemble methods such as PERM (pruned-enriched Rosenbluth method) could provide a way forward.
While studying systems driven out of equilibrium, one usually employs a drive that is not directly coupled to the degrees of freedom of the system. In contrast to such a case, we here unveil a hitherto unexplored situation of state-dependent driving, whereby a direct coupling exists between the two. We demonstrate the ubiquity of such a driving, and establish that it leads to a nontrivial steady-state that is qualitatively opposite to what is observed in other driven systems. Further, we show how state-dependent driving in a many-body system can be effectively captured in terms of a single-particle model. The origin of this description may ultimately be traced to the fact that state-dependent driving results in a force that undergoes repeated resetting in time.
We study the problem of calculating transport properties of interacting quantum systems, specifically electrical and thermal conductivities, by computing the non-equilibrium steady state (NESS) of the system biased by contacts. Our approach is based on the structure of entanglement in the NESS. With reasonable physical assumptions, we show that a NESS close to local equilibrium is lightly entangled and can be represented via a computationally efficient tensor network. We further argue that the NESS may be found by dynamically evolving the system within a manifold of appropriate low entanglement states. A physically realistic law of dynamical evolution is Markovian open system dynamics, or the Lindblad equation. We explore this approach in a well-studied free fermion model where comparisons with the literature are possible. We study both electrical and thermal currents with and without disorder, and compute entropic quantities such as mutual information and conditional mutual information. We conclude with a discussion of the prospects of this approach for the challenging problem of transport in strongly interacting systems, especially those with disorder.
We study the out-of-equilibrium properties of a classical integrable non-relativistic theory, with a time evolution initially prepared with a finite energy density in the thermodynamic limit. The theory considered here is the Non-Linear Schrodinger e quation which describes the dynamics of the one-dimensional interacting Bose gas in the regime of high occupation numbers. The main emphasis is on the determination of the late-time Generalised Gibbs Ensemble (GGE), which can be efficiently semi-numerically computed on arbitrary initial states, completely solving the famous quench problem in the classical regime. We take advantage of known results in the quantum model and the semiclassical limit to achieve new exact results for the momenta of the density operator on arbitrary GGEs, which we successfully compare with ab-initio numerical simulations. Furthermore, we determine the whole probability distribution of the density operator (full counting statistics), whose exact expression is still out of reach in the quantum model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا