ﻻ يوجد ملخص باللغة العربية
Zernike polynomials are a basis of orthogonal polynomials on the unit disk that are a natural basis for representing smooth functions. They arise in a number of applications including optics and atmospheric sciences. In this paper, we provide a self-contained reference on Zernike polynomials, algorithms for evaluating them, and what appear to be new numerical schemes for quadrature and interpolation. We also introduce new properties of Zernike polynomials in higher dimensions. The quadrature rule and interpolation scheme use a tensor product of equispaced nodes in the angular direction and roots of certain Jacobi polynomials in the radial direction. An algorithm for finding the roots of these Jacobi polynomials is also described. The performance of the interpolation and quadrature schemes is illustrated through numerical experiments. Discussions of higher dimensional Zernike polynomials are included in appendices.
The numerical integration of an analytical function $f(x)$ using a finite set of equidistant points can be performed by quadrature formulas like the Newton-Cotes. Unlike Gaussian quadrature formulas however, higher-order Newton-Cotes formulas are not
Given a black box function to evaluate an unknown rational polynomial f in Q[x] at points modulo a prime p, we exhibit algorithms to compute the representation of the polynomial in the sparsest shifted power basis. That is, we determine the sparsity
The usual univariate interpolation problem of finding a monic polynomial f of degree n that interpolates n given values is well understood. This paper studies a variant where f is required to be composite, say, a composition of two polynomials of deg
We prove a positivity result for interpolation polynomials that was conjectured by Knop and Sahi. These polynomials were first introduced by Sahi in the context of the Capelli eigenvalue problem for Jordan algebras, and were later shown to be related
A randomised trapezoidal quadrature rule is proposed for continuous functions which enjoys less regularity than commonly required. Indeed, we consider functions in some fractional Sobolev space. Various error bounds for this randomised rule are estab