ترغب بنشر مسار تعليمي؟ اضغط هنا

Zernike Polynomials: Evaluation, Quadrature, and Interpolation

75   0   0.0 ( 0 )
 نشر من قبل Philip Greengard
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Zernike polynomials are a basis of orthogonal polynomials on the unit disk that are a natural basis for representing smooth functions. They arise in a number of applications including optics and atmospheric sciences. In this paper, we provide a self-contained reference on Zernike polynomials, algorithms for evaluating them, and what appear to be new numerical schemes for quadrature and interpolation. We also introduce new properties of Zernike polynomials in higher dimensions. The quadrature rule and interpolation scheme use a tensor product of equispaced nodes in the angular direction and roots of certain Jacobi polynomials in the radial direction. An algorithm for finding the roots of these Jacobi polynomials is also described. The performance of the interpolation and quadrature schemes is illustrated through numerical experiments. Discussions of higher dimensional Zernike polynomials are included in appendices.



قيم البحث

اقرأ أيضاً

359 - Irfan Muhammad 2021
The numerical integration of an analytical function $f(x)$ using a finite set of equidistant points can be performed by quadrature formulas like the Newton-Cotes. Unlike Gaussian quadrature formulas however, higher-order Newton-Cotes formulas are not stable, limiting the usable order of such formulas. Existing work showed that by the use of orthogonal polynomials, stable high-order quadrature formulas with equidistant points can be developed. We improve upon such work by making use of (orthogonal) Gram polynomials and deriving an iterative algorithm, together allowing us to reduce the space-complexity of the original algorithm significantly.
Given a black box function to evaluate an unknown rational polynomial f in Q[x] at points modulo a prime p, we exhibit algorithms to compute the representation of the polynomial in the sparsest shifted power basis. That is, we determine the sparsity t, the shift s (a rational), the exponents 0 <= e1 < e2 < ... < et, and the coefficients c1,...,ct in Q{0} such that f(x) = c1(x-s)^e1+c2(x-s)^e2+...+ct(x-s)^et. The computed sparsity t is absolutely minimal over any shifted power basis. The novelty of our algorithm is that the complexity is polynomial in the (sparse) representation size, and in particular is logarithmic in deg(f). Our method combines previous celebrated results on sparse interpolation and computing sparsest shifts, and provides a way to handle polynomials with extremely high degree which are, in some sense, sparse in information.
The usual univariate interpolation problem of finding a monic polynomial f of degree n that interpolates n given values is well understood. This paper studies a variant where f is required to be composite, say, a composition of two polynomials of deg rees d and e, respectively, with de=n, and therefore d+e-1 given values. Some special cases are easy to solve, and for the general case, we construct a homotopy between it and a special case. We compute a geometric solution of the algebraic curve presenting this homotopy, and this also provides an answer to the interpolation task. The computing time is polynomial in the geometric data, like the degree, of this curve. A consequence is that for almost all inputs, a decomposable interpolation polynomial exists.
We prove a positivity result for interpolation polynomials that was conjectured by Knop and Sahi. These polynomials were first introduced by Sahi in the context of the Capelli eigenvalue problem for Jordan algebras, and were later shown to be related to Jack polynomials by Knop-Sahi and Okounkov-Olshanski. The positivity result proved here is an inhomogeneous generalization of Macdonalds positivity conjecture for Jack polynomials. We also formulate and prove the non-symmetric version of the Knop-Sahi conjecture, and in fact we deduce everything from an even stronger positivity result. This last result concerns certain inhomogeneous analogues of ordinary monomials that we call bar monomials. Their positivity involves in an essential way a new partial order on compositions that we call the bar order, and a new operation that we call a glissade.
151 - Yue Wu 2020
A randomised trapezoidal quadrature rule is proposed for continuous functions which enjoys less regularity than commonly required. Indeed, we consider functions in some fractional Sobolev space. Various error bounds for this randomised rule are estab lished while an error bound for classical trapezoidal quadrature is obtained for comparison. The randomised trapezoidal quadrature rule is shown to improve the order of convergence by half.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا