ﻻ يوجد ملخص باللغة العربية
In this work the optical properties of amorphous carbon (amC) dust condensed around carbon(C)-stars are constrained by comparing the observations for the Large Magellanic Cloud C-stars from the Two Micron All Sky Survey (2MASS) and from the Gaia data release 2 (DR2) with the synthetic photometry obtained by computing dust growth and radiative transfer in their circumstellar envelopes. The set of optical constants of amC dust considered have been pre-selected according to their ability to reproduce the infrared colour-colour diagrams in the Small Magellanic Cloud. Only two combinations of the optical data set and grain size are able to reproduce the infrared photometry and the Gaia observations simultaneously. The analysis presented provides information about the properties of amC dust grains that might be characterized by a diamond-like structure, rather than a graphite-like one, at least around the most dust-enshrouded C-stars, or be composed of small grains of size less than 0.04 $mu$m. The selected data sets will be adopted to compute grids of spectra as a function of the stellar parameters that will be employed to estimate the dust return and mass-loss rates of C-stars by fitting their spectral energy distribution, and to study the resolved stellar populations of nearby objects.
We present a new approach aimed at constraining the typical size and optical properties of carbon dust grains in Circumstellar envelopes (CSEs) of carbon-rich stars (C-stars) in the Small Magellanic Cloud (SMC). To achieve this goal, we apply our rec
We find that the combined LF of N- and SC-type stars are consistent with a Gaussian distribution peaking at M_bol~ -5.2 mag. The resulting LF however shows two tails at lower and higher luminosities more extended than those previously found, indicati
Luminous Blue Variable (LBV) stars are evolved massive objects, previous to core-collapse supernova. LBVs are characterized by photometric and spectroscopic variability, produced by strong and dense winds, mass-loss events and very intense UV radiati
We explore variations of the dust extinction law of the Milky Way by selecting stars from the Swift/UVOT Serendipitous Source Catalogue, cross-matched with Gaia DR2 and 2MASS to produce a sample of 10,452 stars out to ~4kpc with photometry covering a
We present Spitzer IRS spectra of four carbon stars located in the Galactic Halo and the thick disc. The spectra display typical features of carbon stars with SiC dust emission and C$_2$H$_2$ molecular absorption. Dust radiative transfer models and i