ﻻ يوجد ملخص باللغة العربية
We propose Hide-and-Seek a general purpose data augmentation technique, which is complementary to existing data augmentation techniques and is beneficial for various visual recognition tasks. The key idea is to hide patches in a training image randomly, in order to force the network to seek other relevant content when the most discriminative content is hidden. Our approach only needs to modify the input image and can work with any network to improve its performance. During testing, it does not need to hide any patches. The main advantage of Hide-and-Seek over existing data augmentation techniques is its ability to improve object localization accuracy in the weakly-supervised setting, and we therefore use this task to motivate the approach. However, Hide-and-Seek is not tied only to the image localization task, and can generalize to other forms of visual input like videos, as well as other recognition tasks like image classification, temporal action localization, semantic segmentation, emotion recognition, age/gender estimation, and person re-identification. We perform extensive experiments to showcase the advantage of Hide-and-Seek on these various visual recognition problems.
We train embodied agents to play Visual Hide and Seek where a prey must navigate in a simulated environment in order to avoid capture from a predator. We place a variety of obstacles in the environment for the prey to hide behind, and we only give th
Signaling pathways and networks determine the ability to communicate in systems ranging from living cells to human society. We investigate how the network structure constrains communication in social-, man-made and biological networks. We find that h
Data augmentation is vital for deep learning neural networks. By providing massive training samples, it helps to improve the generalization ability of the model. Weakly supervised semantic segmentation (WSSS) is a challenging problem that has been de
Weakly-Supervised Object Detection (WSOD) and Localization (WSOL), i.e., detecting multiple and single instances with bounding boxes in an image using image-level labels, are long-standing and challenging tasks in the CV community. With the success o
Weakly-supervised object localization (WSOL) has gained popularity over the last years for its promise to train localization models with only image-level labels. Since the seminal WSOL work of class activation mapping (CAM), the field has focused on