ﻻ يوجد ملخص باللغة العربية
We study the convergence of volume-normalized Betti numbers in Benjamini-Schramm convergent sequences of non-positively curved manifolds with finite volume. In particular, we show that if $X$ is an irreducible symmetric space of noncompact type, $X eq mathbb H^3$, and $(M_n)$ is any Benjamini-Schramm convergent sequence of finite volume $X$-manifolds, then the normalized Betti numbers $b_k(M_n)/vol(M_n)$ converge for all $k$. As a corollary, if $X$ has higher rank and $(M_n)$ is any sequence of distinct, finite volume $X$-manifolds, the normalized Betti numbers of $M_n$ converge to the $L^2$ Betti numbers of $X$. This extends our earlier work with Nikolov, Raimbault and Samet, where we proved the same convergence result for uniformly thick sequences of compact $X$-manifolds.
We exhibit a closed aspherical 5-manifold of nonpositive curvature that fibers over a circle whose fundamental group is hyperbolic relative to abelian subgroups such that the fiber is a closed aspherical 4-manifold whose fundamental group is not hyperbolic relative to abelian subgroups.
In a previous paper, we constructed complete manifolds of positive Ricci curvature with quadratically asymptotically nonnegative curvature and infinite topological type but dimension $ge 6$. The purpose of the present paper is to use a different way
Motivated by the recent work of Chu-Lee-Tam on the nefness of canonical line bundle for compact K{a}hler manifolds with nonpositive $k$-Ricci curvature, we consider a natural notion of {em almost nonpositive $k$-Ricci curvature}, which is weaker than
In this article, we consider a closed rank one $C^infty$ Riemannian manifold $M$ of nonpositive curvature and its universal cover $X$. Let $b_t(x)$ be the Riemannian volume of the ball of radius $t>0$ around $xin X$, and $h$ the topological entropy o
We present the relation between the genus in cosmology and the Betti numbers for excursion sets of three- and two-dimensional smooth Gaussian random fields, and numerically investigate the Betti numbers as a function of threshold level. Betti numbers