From outburst to quiescence: spectroscopic evolution of V1838 Aql imbedded in a bow-shock nebula


الملخص بالإنكليزية

We analyse new optical spectroscopic, direct-image and X-ray observations of the recently discovered a high proper motion cataclysmic variable V1838 Aql. The data were obtained during its 2013 superoutburst and its subsequent quiescent state. An extended emission around the source was observed up to 30 days after the peak of the superoutburst, interpreted it as a bow--shock formed by a quasi-continuous outflow from the source in quiescence. The head of the bow--shock is coincident with the high--proper motion vector of the source ($v_{perp}=123pm5$ km s$^{-1}$) at a distance of $d=202pm7$ pc. The object was detected as a weak X-ray source ($0.015pm0.002$ counts s$^{-1}$) in the plateau of the superoutburst, and its flux lowered by two times in quiescence (0.007$pm$0.002 counts s$^{-1}$). Spectroscopic observations in quiescence we confirmed the orbital period value $P_{rm{orb}}=0.0545pm 0.0026$ days, consistent with early-superhump estimates, and the following orbital parameters: $gamma= -21pm3$ km s$^{-1}$ and $K_1 = 53pm3$ km s$^{-1}$. The white dwarf is revealed as the system approaches quiescence, which enables us to infer the effective temperature of the primary $T_{eff}=11,600pm400$K. The donor temperature is estimated $lesssim 2200$K and suggestive of a system approaching the period minimum. Doppler maps in quiescence show the presence of the hot spot in HeI line at the expected accretion disc-stream shock position and an unusual structure of the accretion disc in H$alpha$.

تحميل البحث