ترغب بنشر مسار تعليمي؟ اضغط هنا

Weighted Estimates for One Sided Martingale Transforms

173   0   0.0 ( 0 )
 نشر من قبل Michael T. Lacey
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let $ Tf =sum_{ I} varepsilon_I langle f,h_{I^+}rangle h_{I^-}$. Here, $ lvert varepsilon _Irvert=1 $, and $ h_J$ is the Haar function defined on dyadic interval $ J$. We show that, for instance, begin{equation*} lVert T rVert _{L ^{2} (w) to L ^{2} (w)} lesssim [w] _{A_2 ^{+}} . end{equation*} Above, we use the one sided $ A_2$ characteristic for the weight $ w$. This is an instance of a one sided $A_2$ conjecture. Our proof of this fact is difficult, as the very quick known proofs of the $A_2$ theorem do not seem to apply in the one sided setting.



قيم البحث

اقرأ أيضاً

The purpose of this paper is to establish some one-sided estimates for oscillatory singular integrals. The boundedness of certain oscillatory singular integral on weighted Hardy spaces $H^{1}_{+}(w)$ is proved. It is here also show that the $H^{1}_{+ }(w)$ theory of oscillatory singular integrals above cannot be extended to the case of $H^{q}_{+}(w)$ when $0<q<1$ and $win A_{p}^{+}$, a wider weight class than the classical Muckenhoupt class. Furthermore, a criterion on the weighted $L^{p}$-boundednesss of the oscillatory singular integral is given.
We consider one-sided weight classes of Muckenhoupt type and study the weighted weak type (1,1) norm inequalities of a class of one-sided oscillatory singular integrals with smooth kernel.
Let $A_infty ^+$ denote the class of one-sided Muckenhoupt weights, namely all the weights $w$ for which $mathsf M^+:L^p(w)to L^{p,infty}(w)$ for some $p>1$, where $mathsf M^+$ is the forward Hardy-Littlewood maximal operator. We show that $win A_inf ty ^+$ if and only if there exist numerical constants $gammain(0,1)$ and $c>0$ such that $$ w({x in mathbb{R} : , mathsf M ^+mathbf 1_E (x)>gamma})leq c w(E) $$ for all measurable sets $Esubset mathbb R$. Furthermore, letting $$ mathsf C_w ^+(alpha):= sup_{0<w(E)<+infty} frac{1}{w(E)} w({xinmathbb R:,mathsf M^+mathbf 1_E (x)>alpha}) $$ we show that for all $win A_infty ^+$ we have the asymptotic estimate $mathsf C_w ^+ (alpha)-1lesssim (1-alpha)^frac{1}{c[w]_{A_infty ^+}}$ for $alpha$ sufficiently close to $1$ and $c>0$ a numerical constant, and that this estimate is best possible. We also show that the reverse Holder inequality for one-sided Muckenhoupt weights, previously proved by Martin-Reyes and de la Torre, is sharp, thus providing a quantitative equivalent definition of $A_infty ^+$. Our methods also allow us to show that a weight $win A_infty ^+$ satisfies $win A_p ^+$ for all $p>e^{c[w]_{A_infty ^+}}$.
211 - Alberto Torchinsky 2013
In this note we prove the estimate $M^{sharp}_{0,s}(Tf)(x) le c,M_gamma f(x)$ for general fractional type operators $T$, where $M^{sharp}_{0,s}$ is the local sharp maximal function and $M_gamma$ the fractional maximal function, as well as a local ver sion of this estimate. This allows us to express the local weighted control of $Tf$ by $M_gamma f$. Similar estimates hold for $T$ replaced by fractional type operators with kernels satisfying H{o}rmander-type conditions or integral operators with homogeneous kernels, and $M_gamma $ replaced by an appropriate maximal function $M_T$. We also prove two-weight, $L^p_v$-$L^q_w$ estimates for the fractional type operators described above for $1<p< q<infty$ and a range of $q$. The local nature of the estimates leads to results involving generalized Orlicz-Campanato and Orlicz-Morrey spaces.
Let $mathsf M_{mathsf S}$ denote the strong maximal operator on $mathbb R^n$ and let $w$ be a non-negative, locally integrable function. For $alphain(0,1)$ we define the weighted sharp Tauberian constant $mathsf C_{mathsf S}$ associated with $mathsf M_{mathsf S}$ by $$ mathsf C_{mathsf S} (alpha):= sup_{substack {Esubset mathbb R^n 0<w(E)<+infty}}frac{1}{w(E)}w({xinmathbb R^n:, mathsf M_{mathsf S}(mathbf{1}_E)(x)>alpha}). $$ We show that $lim_{alphato 1^-} mathsf C_{mathsf S} (alpha)=1$ if and only if $win A_infty ^*$, that is if and only if $w$ is a strong Muckenhoupt weight. This is quantified by the estimate $mathsf C_{mathsf S}(alpha)-1lesssim_{n} (1-alpha)^{(cn [w]_{A_infty ^*})^{-1}}$ as $alphato 1^-$, where $c>0$ is a numerical constant; this estimate is sharp in the sense that the exponent $1/(cn[w]_{A_infty ^*})$ can not be improved in terms of $[w]_{A_infty ^*}$. As corollaries, we obtain a sharp reverse Holder inequality for strong Muckenhoupt weights in $mathbb R^n$ as well as a quantitative imbedding of $A_infty^*$ into $A_{p}^*$. We also consider the strong maximal operator on $mathbb R^n$ associated with the weight $w$ and denoted by $mathsf M_{mathsf S} ^w$. In this case the corresponding sharp Tauberian constant $mathsf C_{mathsf S} ^w$ is defined by $$ mathsf C_{mathsf S} ^w alpha) := sup_{substack {Esubset mathbb R^n 0<w(E)<+infty}}frac{1}{w(E)}w({xinmathbb R^n:, mathsf M_{mathsf S} ^w (mathbf{1}_E)(x)>alpha}).$$ We show that there exists some constant $c_{w,n}>0$ depending only on $w$ and the dimension $n$ such that $mathsf C_{mathsf S} ^w (alpha)-1 lesssim_{w,n} (1-alpha)^{c_{w,n}}$ as $alphato 1^-$ whenever $win A_infty ^*$ is a strong Muckenhoupt weight.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا